
Cat. No. 26-3821

MODEL lOO
BASIC

LANGUAGE LAB

CUSTOM MANUFACTURED IN U.5.A. FOR RADIO SHACK. A DIVISION

lid

?&!>!
... irm

m

ft

If

tfBMt. am: co^ejitiqais of sale ahd vans OF RAEHQ SHACK COMPETE It fOUl phe ut and software
PURCHASED FROM A ftAOlD $H*Cl(.eOraPANY.OflNED COMPUTER CENTER RETAIL STOnF. DR FH1M A

RAiJIO BHACK FnAACHISEE Ofl CCrU-CO. AT ITS *UT| IOHIZE.D LOCATION

LIMITED WARRANTY
CUSTtMCA OELIIUTiuIrS

CUSTCMIR aiStimes lul rft=#<jflS*Tily |h«t rtirt RidK) ShirJt compter hardware purchased (the. 'Squlpmens'
'| . *W ny Copies rV RarJw

B^ifb igHvurt <1£liri*d w*.h Ifto Equpmonl or liiMjnsf-d capirilily (Mi ' Solt»ar»") flMflc ffin cpKi'Smtusrc. mpflsty. eipdOilritj.

wiutilrty. and ot*r KDjuiumtiHE tiF aJSTTGWEft.

B CUSTOMER assumes hJ. rBspnnsrtilrtY \<H 1h* cortdilion and fttscOvflmss of irn opmlng fmiranmai* m which It* EquilMeni artrj Setftwe
aie 1o lunctinri. and lor « rriwlliuofi

II. FMMO SHItiCK LlMltSO WMUUNTl^ AH CDrHHTIDMS DF SJU

A. fa e, perod of mnsly ifOr cswdar Days Iron (tie arte ut the Rstno SnaC*. S*S dooimml received upon purchltt Dl* £qu prrtrri , RADIO
SH flCK variaYlEs TO T» (riflioal CUSTOMER tfcl Die ? njuibment ind fit? nrrhurn uriwi whirh 1h» Snlrmrp re amrpii i* 1™ (rom intniilHliiMV
rWeets THIS WARRANT IS ONLY APPLICABLE TO Fti«CRAES OF RADIO SHACK fOUiPHENT BY THE OFMGINAL CUSTOMER F10M
RAUu SHAKCOMPAtJY-OWNtU COMPUTeH CENEFHS. HEJAI. STSIHE5 AND mom =tAD0 SHACK FRANCHISER ANO DEALERS AT ITS

AUTHORIZED LOCATION The warranty It void ' flic Equpmtnt 5 case c unmet has Mm Openers, or i Ira ErKipmsnl 01 SonciietiaK Deer
4bhr>nar rn mumper or ahnorm* <J» If J marialictunng *1efl is dfOwirml =luring !hg 5K«j wsnrjpty p»'ied. 11W aOtOOIlYn BSuipmcll
musl M returned Do a Racio Stuck Computer Center, s Radio ShacK mill Store, sanidipaimii Radio Stuck tmncttsM W Radio ShaCr- dnlft
tar repjrf. *)«) *fth 1 cop? ol If* Salts ddcumenl Or <att agiwrnBnl The ariQinaJ CUSTOMER'S Hie and swlirtwd remedy in IN event ol

a (Meet It lirted 1d tne cmfKiun <ji Hie <Wecf hy rep*^. replKumefl *r rotund tl fl» purchase ptica. at RftUD SHACKS pttehir aurl $ol«
nvf ot-:n (1^1 10 fH n£K hoc re 6hlig»ni> to rcplscn or rupm r nfxndoblc itina

B. FWOlO &1M5H m*!s no wsfisnrj H. IS fw dtsigin. Clpalrfily. capSdly or surrabiKty tar use al 1he Software. fiCW at provulfd ti this

fxfSgupfi SoUmit is IcimtE 1111 ai AS IS'" Daw. wdroul warranti He ongintl CUSTOMER'S ncluswe nemetV In [tie mem Ol a

Sunwam! fliaHtactunng anlKl ft rts repair jr nepUanKiw wifnn |hir>y |3D| cateirtar rJayi of Die date flt W* ftidc Shatt aa* notumpil
'Bre*rt* u gun lK*nnh <j>

L
.tt jutTiiii t Tin ;iHeiJi»c 3uh «ji b ai^ti Ik i bwi-ibiI ilhi SWJm SiLiiti (untpum Ctnnji 3 Raflic ihat* rtla'i SM'S

.

pjiti3**1in(Rhjid Sh» FfSiKiist* «r Ram(i Shad outer aiung wlh [he ules denirnerrt

C Emjt »s prm:d»j iHre« ra «n(*yfle. agem. 1raiir;Hs« 4ol(i or oohti Cwswi is juLtwmc la am jw warnnhes of *ny naiurc fln bfflatl

fl RADif! SHACK
D E.ii.cp: a p.o* J r*i*m. NAUU gMlKliH MML3. 1U WAMHWIIli. HIULUItlMi lUHHMIIIIj III' HtntHmlABlLllir OH FUTMSS F9A I

p-AflnpuijFiHIRF'lGE.

E Some state do ntf Ifiow kimaniDH en her* (ant an mpind miranty lasts so He jibrwe limitatjon((| may not irjfpy lo CUSTOMfP

II. LBOl AT11H QF I.UU9U ITT

A EXCEPT AE PROVIDEO HfRFlH AADlO SHACK 91ALI RAVE NO LlABILITV D«BEBPONSlfllLlTr TQ CUSTOMER C* AWr OTHtR PERSON
I?* IKTHV WITH BFSPECT TO AWT LlABHITY lOSS OH DAMAGE CAUSES OR AU6GETJ TO BE CALSEO D-RECTLy OR 1H&IRCCTLV BV
"[OVirNErtT" 04 'SOnWAFlE" SOLD LEAKG LICENSED OR arUNlSnFO &V flAOHl iHAtK INCLLhDIHCi BUT HOT LIMITED TC ANT
NTERRUFTIOM OF SERVICE LESS OF BV$(*-5$ OR ANTICIPATORY PH0FIT5 OR DONSE OUEtJTtAl DAHAGf$ RESULTING FROM THE
I/3F OR :PEHATir* Of THE "EOJUIOMENT'- OR " SOr*AflE - IH NO iVENT EJLALL RBJOIC- SHACF, BE LI.WLE fOR LOSS OF HRr>lTS. Ofl

AHV INDIRECT SPECiAl CP CONSECBjENllAt DANWGES ARlSlNS C-LTT OF ANY BREACH Of THIS WAfiFIAHTY Oft IN ANY MANN"R
Afl: SIMS OUT. Of OFt CIKINECTTjP WITH TH= EJUjf. l£*M . HttN5t UM LH *N I Itfffl I bit USt UF 1 1* ' FUWH*- NT UR "SnnWARE"

NOTWrTHSTANDING THE A*3VE (.HBTAT10IISAND WABRANTtES RADIO SHACK'S LIABILITY *REltNDE ft fyH DAHAfiES INCURRED BV
CUSTOMER OR OTHERS SHALL NOT EXCEED 7HF. AHfJuNT PAlO gr tLFjTOWH FOR THE PARTICULJ* "I QU IFUENT " Ofl

' SOFTWARE"
if^OLVfO

B ^ADIO SHACK shall nr>l he llihle tor jny dimioes tuatt Dy Oeliy m dtHrtniig dr turn smng Founpraol and a Sctnure
C Ho adit* *nikij, out ot jt|t darned breach ri this Warrantf or IrBiHaclnKti urtflai thj MrVignv rwj tw brought mare- 1run iwrj (Jj jsj<s

alter Bw cause ri art.on has ircfJMl 01 more rhjn lout (I
I ftar! ar>*i ir* darLc d uV Radio Stia;k siles dncum«nr hgr 1t» EqulpHM<il in

i]it*are. wlximei Insi m.iuii

D Some state; do not allow roe InkHhWi (i excluiidr d rtodenrat nr ronsequtndal damages so tn« atxjv* lantnirjnijl rjr fKlimonfsJ mail

«t t(0j Id CUSTOMER;

IT. IWUHD 5M*LK {OrTWAHE UCKWt
RADIO $HAC* grants 10 CUSTOMER £ non-aiduEiv*. paid-up kens* Da uu ire RAPIfJ SHACK StXtwars on in cOTiputw, tuhiectto hit lotlowng
pimisjDns:

A ExC4tK ai <*lh^witt prfnided n Hi>? Ebftwjrg tUfli^JC ap0*4< COpyrshr OwS 4hel ! a^Jply Id Ihf SiiHvvbi:

6 T«te to (he rnedum an mtiieh Ine Snttwaie is itaxam Icassetre- anrJiar OsAjeflel or surwefl I'HUU 1 4 transtitrrgrj lo CUSTOMER , 'Mil ndl litis *o

nie Soihma.

C CuS-TOMFR may UH Soltwsr* rjn one Ima Hmpwter add mcess thai Sarlwarr ttimugh one or more iinniAitt il if« Software permits this

angjajfi

D CIJSIHMEH $rtall not vat, make, rrunufaftuiE, or •ep'oouce tapies ol Sortaarr napi far uu on ant mmpiiter and ;s s SB*i*c*>
piOvd^d in Ihi; 9jr*ta*ie LtrW. CiKtuincr a c:<ccssh' prDhbilic iron disassenihtnrj the Sotmare

E CUSTOWR ii iwniinad to make aiMihonal oopies ol me Sonwirt Hhj lor bacMi(> dr archirai purposes or Haridteirul wpies jr(required in

me oueriutn u< mi cmipuin whft ire Sn^rara. out only ig me eirfjnr mj irtrr^^re a«B« a bacKup copy to be ma* HnttftVflr mr
TRSDOS Srrfhure, CUSTOMfft ij ptmrfled H rrafcff a hmnd ntimbor *r atHdiDnal oopies tor CLrSTOMETl 1 Onfl use

F CUSTOMER m* i*S*J Or diflrmute unnnildipd oapiBE ol the Sdhare pmvulRd CUSTOMER Hji pijrcriassd oneonp^ of r«e Sottaart tar each
rn* &ed or rjrslnhuted The provioni) tf |hi$ trjrrmjrt Lioense ^iaK also be applicabta 10 third parlies Kffimira cr/pin a/ the Sofmaptinw,
UUaiUhhR

43 All opjnghii notices H** be re!arn«l on all oopies g1 ite Software

V. rVruCAMLlTT JF *ARIUU|TT

A the term; +nn pondrNgns at rtnt Wjfrjnryir-t afjp^afc* ad betwien RAD'O 5H»yt and CUSlOMfR re tip* a W« o< na Enuwrmnt anden
^uftwarc UcercB lo DUSTOWf R or to a Iraisa^Kir' wherrty njuplO SHAOH sets or cumrtys swh Equiptnem to a nnrj wtf 1»i lent ic

CUSTOMER
e, ti* Hiii'uitiiKi or iiauuiry ano wairanty provqigos nertm tmi inort to the htnam ai ralmu shalk the^imor <mw ann.-or mnsor 01 in

Sdrtwirfl and any minulidunr ui 11k Eou*merrt sold bf RADli SHACK.

VI. STATf mw BIGHT!

Tlte warranties, granted noan give the nrlgfru* CUSTOMER soecihe legal nghts. »nd rh«

rmro slant: to safe.

•MpjMl CUSTOMER nuy nave other rigms wrach vary

m

#*

m
ii

TRS-80*

Model 100

BASIC Language Lab

Radie/haeH
A DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 76102

Model 100 BASIC Language Lab Program:

© 1983 Tandy Corporation

All Rights Reserved.

Model 100 BASIC Language Lab Program Manual:

© 1983 Tandy Corporation

All Rights Reserved.

Reproduction or use, without express written permission from

Tandy Corporation, of any portion of this manual is prohibited.

While reasonable efforts have been taken in the preparation of this

manual to assure its accuracy, Tandy Corporation assumes no

liability resulting from any errors or omissions in this manual, or

from the use of the information contained herein.

10 987654321

Contents

Introduction 1

Lesson #1 Introduction to BASIC 3

Lesson #2 Saving Programs 15

Lesson #3 Interest Calculations 31

Lesson #4 Sales Commissions 45

Lesson #5 Day, Time and Date 57

Lesson #6 Using the Editor 69

Lesson #7 Sales Trend 87

Lesson #8 Plot Your Data 99

Lesson #9 Functions Ill

Lesson #10 Data Files 123

Lesson #11 Average Sales 131

Lesson #12 Sound & Simulation 145

Lesson #13 Function Keys 155

Lesson #14 Using the COM Option 165

Lesson #15 TELCOM Applications 175

Application #1 Calculator 185

Application #2 Memory Master Game 189

Application #3 Descriptive Statistics 195

Index 203

Introduction

If you've used your TRS-80 Model 100 just once, you know how simple, versatile,

and powerful a computer it is. Its built-in application programs allow you to perform

normally complex computer operations with ease. This includes data manipulation,

computer-to-computer communications, word processing, and more.

However, as you become more familiar with your Model 100, you can make the

computer even more useful by customizing it to suit your own special needs. This is

done through BASIC, the built-in programming language.

For instance, from BASIC, you can:

• Re-define the Function Keys (ED through (Fj£).

• Communicate with information services and other computers.

• Write programs for a wide range of applications such as forecasting sales trends and

performing interest or mortgage calculations.

• Make use of the computer's graphic and sound capabilities.

and a host of other operations!

This course will show you how to perform operations such as these by explaining in

detail the BASIC section of your Model 100 Owner's Manual. This means that by the

time you've finished this course, you'll be writing your own programs and using the

built-in application programs more effectively.

Since most of the application programs not built-in will be written in BASIC, and

since BASIC interacts with the other built-in programs, you'll find it is definitely to

your advantage to become familiar with BASIC.

So sit back and get ready to enjoy your Model 100 even more. You're about to find

out how powerful a computer it really is!

Lesson #1 Introduction to BASIC
To use the BASIC capabilities of the Model 100, you must first learn how to

communicate with your Computer. Essentially, this involves typing instructions on the GOTO
keyboard and watching the display for responses from the Computer.

While you can type anything you wish on the keyboard, the Model 100 only responds
BREAK

to words written in its own 'language." This "language" is BASIC. If you type
something which the Model 100 does not recognize as a BASIC word, it will respond PAUSE
with an error message. ^
In this lesson, you will learn a few BASIC commands to communicate with your LIST
Computer and write simple programs.

It should be mentioned at this point, that even when you type a BASIC word, the CONT
Model 100 will not respond until the ENTER key (located in the right side of the

keyboard) is pressed. After pressing (ENTER) , the line just typed is placed in memory
NFU]

for processing by the Computer.

Throughout this Manual, the phrase "enter this command" will be used often. This

simply means that you should press (ENTJB) after typing the command or instruction.

Also, when we tell you to press (BREAK) , you should press both (SHIFT) and (PAUSE)

together.

Accessing BASIC
Prior to typing or editing a BASIC program, you must access the BASIC interpreter of
the Model 100.

When you Power-Up the Computer, you will see the Main Menu, which shows all the

"flies" that exist in the Model 100' s memory. Think of these computer files simply as

file folders that may hold text or programs.

If you haven't created any files, the Main Menu displays the built-in application

programs:

On initial Power-Up, the Main Menu Cursor— the large, dark rectangle — is

positioned over the word "BASIC." The Cursor can be placed on any other Menu
word by pressing the Cursor Movement Keys (C~E) , C3 , CD , or CD).

To access the BASIC interpreter, simply position the Cursor over the word BASIC
and press (ENTER) . The Display will then look like this:

The number 21190 indicates the number of free bytes for creating any programs and
it may vary depending upon the capacity of your machine and whether any other files

have been created and saved.

The word OK and the flashing cursor symbol below it, indicate that you are in the

Command Mode of BASIC and ready to begin programming.

Experiment #1 Entering a Command
A command is an instruction to the Computer ordering it to do something
immediately. In this experiment you will learn how to enter a simple command.

First you will attempt to have the Model 100 print out a name on the display. Type
the name:

JOHN SMITH

You may use any other name. Now, press (ENTER) . As soon as you do this, the

Computer displays the message:

?SN Error

This message indicates that an error, specifically a syntax error, has been made. The
syntax error occurred because the Computer doesn't recognize John Smith as part of

its vocabulary (also known as the Instruction Set).

The correct way to instruct the Computer to print the name is to type:

PRINT "JOHN SMITH" (ENTEff)

Be sure to press (ENTER) at the end of the line. The key word PRINT and the

quotation marks enclosing the name are recognized as part of the Computer's
vocabulary. This way no syntax error occurs and the name appears printed right below
the command.

Use the PRINT command to print your own name if you haven't already done so.

Also, try printing other phrases. For example, to print How now brown cow, type:

PRINT "HOW NOW BROWN COW" (ENTER)

Notice that the phrase is printed exactly as it appears within the quotation marks,

including spaces.

Experiment #2 What is a BASIC Program?

A BASIC program is a list of instructions (or statements) that the Computer

executes, one at a time, in a sequential order. An instruction differs from a command
in that it is preceded by a line number.

Here is a simple BASIC program:

10 PRINT "JOHN SMITH"

This program, consisting of only one statement, the PRINT statement, accomplishes

the same thing as the command:

PRINT "JOHN SMITH" (ENTER)

But because the word PRINT is being used in a program and preceded by a line

number, it is now called a statement. The number 10 which is typed before the PRINT
statement is called a line number. Every line in a BASIC program must have a line

number, even if the program contains only a single line.

Type line 10 as it appears above. Notice that nothing happens this time when you

press (ENTER) . Unlike a command, which instructs the Computer to perform a task

immediately, a program does nothing until the Computer is instructed to execute it.

This is accomplished with the command:

RUN

Type the RUN command. Don't forget to press (ENTER) after typing it.

After entering the RUN command, the program is executed and the name is displayed.

A more economical way of instructing the Computer to execute your program is to

press the RUN Function Key, (H). This accomplishes the same thing as typing RUN
CENTER) .

Now try a slightly more ambitious program. Enter the following two-line program:

10 PRINT "RADIO SHACK MODEL 100"
20 GDTO 10

The second statement in this program begins with line number 20, indicating that this

instruction should be executed after the first line which has a smaller line number.

There is nothing special about the line numbers used in this program. The important

thing is that the PRINT instruction has a smaller line number than the GOTO
instruction.

Execute the program with the RUN command or by pressing CFJ) .

As you can see, unlike the first single line program, this second program prints the

name within quotation marks repeatedly. This is known as an "infinite loop"
program because the GOTO statement in the second line of the program simply

transfers control back to the first line which prints the "string" (a group of characters

and/or numbers) again on the next line.

Because of this continuous transfer, the program has no way of terminating and so it

must be terminated manually by you. To "break" the program, press (BREAK)

(tSHIFT) (PAUSDv

When you press (BREAK) , the Computer will display a message to show where the

program stopped when it was "broken." For example:

Note that the program you wrote "scrolls up and off" the screen as the program

began printing. If you wish to see the program as you wrote it again, enter the

command:

LIST

or simply press the LIST Function Key, (FD. In either case, the program will appear

on the Display again.

Execute this program again with the RUN command or by pressing CF4) .

After letting the program run a few seconds, terminate it by pressing (BREAK] .

This time after pressing (BREAK) , enter the command:

CONT

As you can see, the program resumes execution. The CONT command is used to

CONTinue execution after the program has been "broken." Execution will start at the

same place where the program was interrupted.

Experiment #3 Simple Editing

Here's the program from the previous experiment:

10 PRINT "RADIO SHACK MODEL 100"
20 GOTO 10

Suppose you want to change line 10 so that the message reads:

I LOVE MY MODEL 100

This can be done by retyping line 10 entirely:

10 PRINT "I LOVE MY MODEL 100" (ENTeTD

Now, when you list the program with the LIST command or with the (ED Function

Key, the following is displayed:

Execute this program to verify that the new phrase is displayed. Now, instead of

pressing (BREAK) to interrupt execution, press the (PAUSE) key. This will cause the

program to stop momentarily. To continue execution, simply press the (PAUSE) key
again. Pausing a program may be useful when you want to read what is being

displayed before it scrolls off view. Of course this program must still be terminated by
pressing (BREAK) because it still is in an infinite loop.

Try a few other experiments with the PRINT command. Type in the following

program:

10
20

PRINT
PRINT

"MY NAME
"LEE"

IS"

Run this program. The output should be:

Now, retype line 10 to insert a space between the word "IS" and the quotation mark.
Also, add a semicolon at the end of line 10. The changed program should look like

this

10
20

PRINT
PRINT

"MY NAME
"LEE"

IS

Execute this program. The output should appear as:

The printing appears all in one line because the semicolon instructs the Computer to

continue printing immediately after the first line is printed. The space after "IS" in

the first line was added so that the words "IS" and "LEE" would not run together.

If you wanted to space the name further apart, you could add more spaces after "IS"

or you could add spaces before "LEE" in line 20.

Another way to space the printing is to use a comma instead of a semicolon. Retype

line 10 so that it reads:

10 PRINT "MY NAME IS "
,

Now list the program and it should read:

Run this program. The output should appear as:

This time "IS" and "LEE" are spaced several columns apart. The comma in the first

line means "begin printing in the next field" (more on fields later).

Enter the following program:

10 PRINT "HOW "
. "NOW "

5

20 PRINT "BROWN"! "COW"

Would you guess what the output of this program will produce? When executed, the

display will show:

The comma in line 10 caused the two strings HOW and NOW to be spaced several

columns apart. The semicolon between the two words "BROWN" and "COW"
caused them to print without a space. Now if line 10 is retyped so that the comma is

changed to a semicolon and the semicolon at the end of the statement is omitted,

10 PRINT "HOW " i "NOW "

20 PRINT "BROWN" i "COW"

the output would be

The second PRINT statement produces output on the second line because the carriage

return after the first PRINT statement has not been suppressed with a semicolon or

comma. If you wanted to print the words on one line, neatly spaced one column apart,

you could rewrite your program as follows:

10 PRINT "HOW " 5 "NDW "
I

20 PRINT "BROWN "
! "CDW"

10

When it is executed, it produces, as expected, the following:

A BASIC program can be edited a line at a time simply by retyping the entire line as

you have been doing.

To delete an entire line from a program, all you have to do is to type the line number
of the statement you wish to delete and press (ENTER) .

For example, list the current program:

Now type

20 (hue)

If you list the program again, you will see that line 20 has been effectively deleted:

Retype line 20 to restore your program to its previous form:

10 PRINT "HOW "
! "NOW " ?

20 PRINT "BROWN "
5 "COW"

11

A new line can be added to a BASIC program at any time simply by typing it with the

appropriate line number. If you want to add a statement before line 10, give it a

number less than 10 (the smallest line number allowed is 1). If you want to add a line

between the two lines, give it a number between 10 and 20 (e.g., 15).

Line numbers 10 and 20 were used to allow insertion of new lines. If successive line

numbers had been used, for example 15 and 16, then no new lines could have been

inserted. It is a good practice to use line numbers that are multiples of 10 (or at least

5).

Here's your program again:

10 PRINT "HOW "
5 "NOW "

5

20 PRINT "BROWN "
5 "COW"

Suppose you want to insert a line between 10 and 20. Simply type:

15 PRINT "SPLENDID "5 (ENTER)

When you list the program now, it will show:

Even though line 15 was typed after lines 10 and 20, it takes its correct place in the

program because its line number falls between 10 and 20.

Execute this program. The following output will result:

It should be clear by now that any BASIC program can be edited easily with the use

of the line numbers. You can add, delete, insert, and change lines and that is all you

ever need to do.

12

Experiment #4 Writing Your Own Programs

By now you should be able to write simple BASIC programs using the two

instructions PRINT and GOTO.

Before you go on experimenting with the spacing in PRINT statements using the

comma and the semicolon, you should be aware of another useful command, the

NEW command.

When you enter the NEW command, any program that has been previously typed and

is currently residing in working memory will be erased automatically.

Before you begin typing in a new program, you should always use the NEW
command to clear out the old program. Otherwise, you may end up with a

combination of your new and old programs.

Assume that your old program still resides in memory:

10 PRINT "HOW " 5 "NOW " 5

15 PRINT "SPLENDID "

5

20 PRINT "BROWN " i "COW"

Now, without deleting this program, enter the following new program:

10 PRINT "MY COMPUTER IS A "5

20 PRINT "TOOL."

If you list the program, you will find it is:

Note that line 15 still exists because that line number was not used in the new
program. So remember, before typing a new program, clear the memory with the

command NEW. This won't be necessary, however, if you are certain that no program

exists in memory.

What you have learned:

In this lesson you have learned some commands to write and execute a simple BASIC
program. The PRINT and GOTO statements have been used to display simple

messages. Editing a BASIC program can be accomplished by retyping existing lines or

typing new lines. The NEW command is used to delete an entire program from

memory.

13

SAVE

Lesson #2 Saving Programs
In this lesson you will learn how to save programs in memory and on cassette tapes.

You will also learn how to recall a program from storage and how to merge a stored

program with another program.

Experiment #1 Saving a Program In RA1VT

As it was mentioned before, the Model 100 can hold several files, many of which can

be program files. In Lesson 1 you learned to write simple BASIC programs in the

BASIC system of the Computer. When you have written a program that you intend to

use repeatedly, it is a good idea to save it in memory (also known as RAM, for

Random Access Memory). When you save a program in RAM, in effect, you create a

program file.

The following program serves to demonstrate how any program can be saved in RAM:

10 PRINT "THIS IS A TEST"
20 PRINT "OF THE MODEL 100 COMPUTER"

Access BASIC. Clear working memory with the NEW command and then type the

program as it appears above.

Execute the program. The following will be displayed:

The first step for saving a program in RAM is to decide upon a filename. This

filename appears listed as a file in the Main Menu and it serves to identify the

program. Filenames cannot exceed six characters in length.

You may use any combination of letters and digits for a filename. However, the first

character in a filename must always be a letter. The following are examples of valid

filenames:

MYPROG
SKETCH
ACCNT2

15

The following are examples of illegal filenames:

1 PROG (must begin with a letter)

MICROCOMPUTER (exceeds the maximum of six characters in any file

name)

Suppose you want to save the program above under the filename

PROG1

To do this, simply type:

SAUE "PR0G1" (ENTER)

The Display will show the prompt OK to indicate that the program has been SAVEd.

Use the command NEW to clear the program from working memory. To verify that

the program no longer exists in working memory, enter the command:

LIST (ENTER)

or press J§), the LIST Function Key. The computer will respond with:

LIST
OK

and nothing else, indicating that there is no program currently in working memory.

The program has not been wiped out. It has been erased from working memory but it

now exists in RAM. To confirm that this is true, enter the command:

FILES (ENTER)

or press the FILES Function Key, JD. In response to this command, the names of all

the files stored in RAM, including all BASIC programs, will be displayed. In this

case, if you haven't SAVEd any other programs or files, the name

PROGi .BA

will be displayed.

This is your program. The characters ".BA" form a "file extension" which indicates

that this file is a BASIC program. The Computer automatically appends this extension

to the name of any BASIC program when it is saved in RAM.

If you want more proof that your program was indeed saved as a file, press the Menu
Function Key, (H). You will see PROGI.BA displayed in the Main Menu as shown
below.

16

A simpler way to save a program in RAM, is to use the SAVE Function Key, ,

After typing a program you wish to save, simply press ©. The Computer will

prompt you with the message:

Saue "

All you have to do then is to type a name for the file as you did before and press

(INTER) .

The number of files which can be saved is limited only by the amount of RAM
available. If you continue to add files to RAM, eventually all available RAM will be

used up and no more programs can be saved.

Experiment #2 Loading a Program From RAM
After you have saved a program in RAM, you may execute it simply by positioning

the Cursor over the word identifying it in the Main Menu and pressing (ENTER) .

However, if you wish to modify or alter the program in any way, it is very convenient

to LOAD it into the BASIC system.

Let's use PROG1 which you SAVEd in the last experiment and LOAD it into the

BASIC system.

You can do that with the command:

LOAD "PR0G1" (ENTER)

Another way to LOAD the program is to press the LOAD Function Key, ®). After

pressing (F2) the message

Load "

appears on the Display. All you should do then is to type

PR0G1" (ENTER)

After Loading PROG1 with the LOAD command or (H), LIST the program to verify

that it is indeed in working memory. The following should be displayed:

If you execute the program with the RUN command you will see that the output is the

same as before.

Enter the command FILES or press (FT) .

17

You will see that the program PROG1.BA is still listed, indicating that it is still saved

in RAM. Loading a program from RAM does not erase it from storage.

Notice, however, that an asterisk appears to the right of PROG1.BA. The asterisk

indicates that the program is currently in working memory.

Use the NEW command to delete the program PROG1 from working memory. Use
the LIST command to verify that working memory does not contain the program. Now
type the command

RUN "PR0G1" (ETJTER)

The following should appear on the LCD:

This illustrates a useful option of the RUN command. If the RUN command is

followed by the name of a program stored in RAM (the name must be enclosed in

quotes), then the program will be loaded into working memory and executed

immediately. Thus the command:

RUN "PRDG1" (ENTER]

is equivalent to the two commands:
>

LOAD "PR0G1" [ENTER)

RUN (ENTER)

Use the LIST command to verify that the program now resides in working memory.

The program will be modified by adding a third line. Type the following line:

30 PRINT "AND ITS ABILITY TO STORE FILES" (ENTER)

List the program to verify that it is:

18

When you LOAD a program from RAM into working memory, you may add, delete,

or insert new lines as you wish. The changes you make are immediately incorporated

into the program.

Delete, the program from working memory with the NEW command. Use the LOAD
command to recall program "PROG1" from RAM. Type:

LOAD "PR0G1" (ENTER)

List the program with the LIST command. You should see:

The new line was effectively incorporated in "PROG1" which is stored in RAM.

You can also LOAD and execute a BASIC program directly from the Main Menu.

Press (F© to exit BASIC and return to the Main Menu. You should see something

similar to

Move the cursor over the filename PROG1.BA as indicated below.

19

If you press (ENTER) , several things will happen: the computer enters BASIC and then

loads and executes PROG1.BA. You will see

with the Ok prompt indicating that you are in BASIC . If you list the program you will

see that PROG1.BA is in working memory.

Experiment #3 Changing a Filename

It is possible to change a file name using the command:

NAME "old filename. extension" AS "new filename. extension"

where oldfilename is the name of the program as it now exists, and new filename is

the. new program name you wish to assign to it.

For example, if you wish to change the filename "PROG1" to "TEST1," type:

NAME "PROGi.BA" AS "TE5T1.BA" (ENTER)

Verify the name change with the FILES command or by pressing (M).

Now, using the NAME. . . AS command, change the file name back to "PROG1."

NAME "TEST1.BA" AS "PROGI.BA" (ENTER)

Again, you may confirm that the name was changed to PROG1 with the FILES
command.

Experiment #4 Saving a Program on Cassette

While it is convenient to save your programs in RAM, there is only a finite amount of

space available. Eventually, there will be no room left for new programs to be saved.

An alternate method of saving your files is to store them on cassette tapes using a

cassette recorder. Using cassettes, you can store essentially an unlimited number of

programs.

20

PR0G1 should still be in working memory. Use the LIST command to confirm that it

is. It should appear as:

If it is not in memory you should LOAD it from RAM or type it in as shown above.

To save a program on cassette, it is first necessary to connect the Model 100 to a

suitable cassette recorder. For optimum results we recommend the Radio Shack

CCR-81 Computer Recorder (catalog number 26-1208) with connecting cable and

instructions supplied. Be sure that the proper connections are made before proceeding

further.

Place a blank tape in the cassette recorder and rewind it, if necessary. Then advance

the tape past the leader. (If you use Radio Shack Leaderless cassettes, catalog number

26-3019, this isn't necessary.)

Press the RECORD (red key) and PLAY keys down together. They should stay down,

but the tape will not move. If it does, you do not have the remote jack inserted. Insert

the jack.

Now you are ready to save the program onto the tape. Enter the following command:

CSAYE "PR0G1"

The recorder will run briefly and then stop. The RECORD and PLAY keys, however,

will stay down. After the tape stops, you may press the STOP key and rewind the

tape.

The program now has been saved with the filename "PROG1."

Another way to save the program on tape, instead of using CSAVE "PROG1" is to

use the command:

SAME "CAS -.filename"

where CAS: specifies the device to be used for the saving operation, in this case the

cassette recorder, and filename is the name of the program to be saved. Using this

command, you would specify:

SAVE "CAS:PR0G1" (ENTER)

21

Experiment #5 Loading a Program from
Cassette

The program you just saved on tape in the previous experiment, PROG1, will now be

loaded back into working memory. But first, delete PROG1 from working memory
with the NEW command.

Verify that it has been deleted with the LIST command or by pressing the LIST
Function Key, (F5) .

Be sure that the cassette recorder is properly attached to the Computer. Insert the

cassette containing the program into the recorder and rewind if necessary.

Press PLAY on the recorder. The key will stay down, but the tape will not advance.

Enter the following command:

CLOAD "PROGi"

As soon as you press (ENTER) , the tape will start turning and the program will be read

into the Computer. If this is accomplished successfully, the computer will display:

If the tape was not read successfully, an I/O (Input/Output) error message will be

displayed. If this happens, rewind the tape and adjust the volume control. Then use

the CLOAD command again to read the tape.

If the tape is read successfully, you may verify that the program is in working
memory by listing it with the LIST command (or with (JD). The following will be

displayed:

22

When the command CLOAD "PROG1" is entered, the Computer searches the tape

until a program stored under the name "PROG1" is found. This program is then read

into working memory.

The command

LOAD "C AS -.filename" (ENTER)

may be used in place of CLOAD "filename". Remember that filename specifies the

name of the program you wish to LOAD from the cassette.

Delete the program from working memory with the NEW command and verify that it

has been erased by using the LIST command.

Rewind the cassette and press the play key. This time type the command:

CLOAD (HUB

When this command is entered, the cassette recorder will run briefly and then stop.

Also, the computer will display:

indicating that the program was read successfully. List the program in memory with

the LIST command. You will see that the same program was loaded from the tape.

This illustrates another option of the CLOAD command. When the filename of the

program is omitted, the first program encountered on the tape is loaded into memory.

Since your program PROG1 was the first program on the tape, it was loaded into the

Computer.

Experiment #6 Verifying a Stored Program

Your Model 100 allows you to verify that a program has been saved successfully (i.e.

without any errors) on cassette tape. Another option of the CLOAD command is used

to accomplish this.

23

Verify that the program still resides in working memory with the LIST command. If it

has been deleted, load it from the cassette tape or type it in from the keyboard. Here
is the listing again:

Rewind the cassette tape containing the program and press the PLAY key on the

recorder.

Type the command

CLOAD? "PROG1" (ENTER)

The recorder will run briefly and then stop. The Computer will display:

Found: PROG1
OK

In this case, the program stored on tape was not SAVEd into working memory, but

was compared, character by character, with the program already in working memory.
If an inconsistency is found at any point, an error message will be displayed,

indicating that the program saved on the cassette tape was not the same as the one in

working memory.

If an error has occured, you can reSAVE the program and use the CLOAD? command
again to check the saved program.

As with the CLOAD command, if the file name is omitted from the CLOAD?
command, the first program encountered on the tape is compared with the program in

working memory.

List the program in working memory. You should see:

24

MM

Delete line 30 by entering the line number. Now list the program to verify that it is:

This is not the program that was saved on the cassette (line 30 is missing). The
CLOAD? command will be used to compare the program in working memory to the

program saved on cassette. Since they are not the same, an error message will be
displayed.

Rewind the cassette and press the play key. Enter the command

CLOAD?

This time, the message:

Verify failed

will be displayed, indicating that the two programs are not the same.

Don't forget the question mark (?) after CLOAD since otherwise the program saved on
tape will be loaded into working memory, replacing the resident program there. If the

CLOAD? command indicates a "bad" program on tape, then the CSAVE command
can be used again to resave it.

Experiment #7 Merging two Programs

Rewind the cassette tape containing the saved program and press the PLAY key. Then
load the program back into memory with the CLOAD command. List the program to

confirm that it is:

25

The program will now be saved in RAM in "ASCII" format, rather than the usual
' 'compressed' ' format. This means that the program will be saved exactly as it was
written. Ordinarily, programs are saved in compressed form. In compressed form, key
words such as PRINT, are replaced by a single character to conserve storage space.

Type the following command:

SAME "PR0G2" »A (ENTER)

The "A" following the name indicates that the program is to be saved in ASCII
mode.

Another way of saving a program in ASCII format, is to use the extension .DO as part

of the SAVE command. For example, to SAVE PROG2 in this way you could type:

SAVE "PR0G2.D0" (INTER)

Delete the program from working memory with the NEW command.

Confirm that it has been saved in RAM with the FILES command.

PROG2 will be listed as:

PR0G2.D0

The extension "DO" (for DOcument) will be attached to any BASIC program saved

with the ASCII option. There are several reasons why you might want to save a file in

the ASCII format. As it will be illustrated later in this experiment, merging files is

one of the main ones.

Delete the program from working memory with the NEW command, and type the

following one line program.

5 PRINT "HELLO MODEL 100 USER" (ENTER)

Merge PROG2, which is saved in RAM with the ASCII option, with this one line

program, by typing the command:

MERGE "PR0G2" (ENTER)

List the program in working memory to confirm that it is

5 PRINT "HELLO MODEL 100 USER"
10 PRINT "THIS IS A TEST"
20 PRINT "OF THE MODEL 100 COMPUTER"
30 PRINT "AND ITS ABILITY TO STORE FILES"

Merging a program in working memory with one that has been saved in RAM, can

only be done if the program in RAM was saved with the A (ASCII) option.

Delete lines 20 and 30 by entering just the line numbers and then rewrite line 10 as

follows:

10 PRINT "HERE IS A MESSAGE FOR YOU" (ENTER)

26

List the program in working memory to confirm that it is:

PROG2 will now be merged with this two line program. Remember that PROG2 is in

RAM and consists of:

10 PRINT "THIS IS A TEST"
20 PRINT "OF THE MODEL 100 COMPUTER"
30 PRINT "AND ITS ABILITY TO STORE FILES"

Note that the program in working memory and PROG2 both have a line 10. Merge the

two programs with the command

MERGE "PR0G2" (ENTER)

List the program. It will be:

Line 10 of the program (PROG2) saved in RAM replaced line 10 of the program
resident in working memory. This will always happen. If two programs to be

MERGEd have any line numbers in common, the lines of the program SAVEd in

RAM will replace the lines of the program in working memory.

Programs saved on cassette tape may also be merged with a program in working

memory as long as they are saved with the A option. The appropriate command is:

CSAVE "PR0G2" »A

or

SAUE "CAS:PR0G2" ,A

27

Then, to merge a program in working memory with one stored on tape, use the

command:

MERGE "CAS:PR0G2" (ESTER)

Once you have MERGEd PROG2 with the program in working memory, SAVE the

newly formed program in the conventional way (without the A option) using the

SAVE "PROG1" command.

If you return to the Main Menu by pressing (Ff), you will see the two programs that

have been SAVEd:

Jun 22

,

19S3 Wed lls0i;32 (OMicrosoft

SCHEDL
TEXT TELCOM ADDRSS
PROG 1 . BA PR0G2 . BA - .

-

-. - — . — — »
—

— .
— .._ _ _ — . — - . —

--. -
—

» — — » — " .
-

Select s 20869 Bytes free

Experiment #8 Deleting a file from RAM
Often times you'll need to eliminate files and programs that are no longer useful, or

that you have SAVEd on tape to free additional memory space.

You can delete a file from the RAM storage area with the KILL command. The
general form of the KILL command is :

KILL "filename, extension"

where filename is the name of the program you wish to delete, and extension specifies

the characters .BA, in the case of a BASIC program, .DO, in the case of a program
SAVEd with the A option or a text document, and .CO, in the case of a machine

language program.

Use the KILL command to delete PROG1 from RAM:

KILL "PR0G1.BA" (ENTER)

The prompt Ok and the blinking cursor will appear on the Display after the program

has been deleted.

Use the FILES command (or (M)) to list the files in RAM storage. You will notice

that PROG1.BA is no longer listed. This is because the program has been deleted

from RAM.

To summarize, the KILL command deletes a File from RAM storage. The NEW
command deletes a program from working memory, but does not affect the file in

RAM storage.

28

Also, you should be aware that a file cannot be deleted if the same file is also in

working memory. That is, if you LOAD a program from RAM into working memory
and then attempt to KILL this file, you will get an error message. You should first

delete the program in working memory with the NEW command and then proceed to

KILL the file in RAM.

What you have learned:

You have learned how to SAVE BASIC programs in RAM and on cassette tape. You
learned how to LOAD a program from RAM or from tape and how to verify that a
program has been saved correctly. You also learned how to MERGE a SAVEd"
program with a program in working memory. You found out that in MERGE
operations, if line numbers in RAM are in common with line numbers in working
memory, the line numbers of the RAM file take precedence over those in working
memory. Finally, you learned how to delete files from working memory and from
RAM.

29

Lesson #3 Interest Calculations

This lesson illustrates the use of variables and the assignment of values to variables.

Applications to the calculation of interest and mortgage payments will serve as useful

examples of the use of variables in BASIC programs.

The programs used in this and all the following lessons will be explained line by line

to give you a thorough understanding of the operations and the concepts involved.

Va r i ab

A r i t h m

e|x p r e s

ftssi snmertt

INPUT

CLEAR
:-

:

::;;i;i|^:-::
;::::jM!:iw|m

Experiment #1 Simple interest

If P dollars are borrowed at the simple interest rate r, then the amount S that must be

repaid after t years is given by the formula

S = P(l + it)

S is called the sum and P is the principal. The first program in this lesson calculates S

for the following values of P, r and t:

P = $10,000

r =18% per year

t = 10 years

Carefully enter the following program into the Computer:

10 P = 10000
20 R = .18
30 T = 10
40 S = P* < 1 + R * T)
50 PRINT "THE SUM IS *" ? S

After the program is entered, execute it by entering the RUN command or pressing the

RUN Function Key, (ID. The output from the program should be:

If $10,000 is borrowed for 10 years at the simple interest of 18%, you will have to

pay back $28,000.

31

How the simple interest program works:

Line 10 assigns the value of 10000 to the variable P. This is called an assignment

statement. The letter P is called a numeric variable because numerical values can be

assigned to it. Note that the principal, $10,000, is written without the dollar sign ($)

or comma (,.). In general, numeric constants should be written without commas or

dollar signs in BASIC.

Line 20 assigns the value of .18 to the variable R. This is the decimal equivalent of

the 18% interest rate. The conversion to decimal form is necessary because BASIC
does not allow numeric constants to be written with a percent (%) symbol.

Line 30 assigns the value of 10 to the variable T. This is the length of time (10 years)

allowed to repay the loan.

Line 40 computes the sum of principal and interest and assigns it to the variable S.

Note that the expression,

P * (1 + R * T),

looks very much like the formula previously seen for calculating the sum. The symbol
"*"

is used to denote multiplication and, as usual, + denotes addition.

Line 50 prints an explanatory message and the value of S.

The variables P, R, T and S are all valid examples of numeric variables. A numeric

variable can be

a) any letter

b) any two letters

or

c) a letter followed by a number.

For example, the following are all valid numeric variables:

A AA B2 CQ Y9

But the following are not valid numeric variables:

IS $5 A?

The first four lines of the program are assignment statements. In general, an

assignment statement follows the form:

variable = expression

where ' 'variable' ' is any valid numeric variable and ' 'expression' ' is any valid

numeric expression. The right hand side can be a constant. The value of the

expression is assigned to the variable.

The arithmetic operators in BASIC are:

+ addition

— subtraction

* multiplication

/ division
A

exponentiation

32

Line 40 contains an example of a valid expression containing arithmetic operators.

Here are some more:

a) A*B/C
b) Q + A4 - 6.5

c) F * H8 + J9

You should note that spaces or blanks are not significant in arithmetical expressions of

this type. For example, the expression in a) could have been written

A * B / C or A*B / C or A * B/C

This allows you to space out the symbols so that they can be easily read.

However, it is important to note the order in which expressions such as c) are

evaluated.

In BASIC, mathematical operations always follow a hierarchical order. Exponentiaton

has the highest priority, multiplication and division are next, and finally, addition and

subtraction have the lowest.

Therefore, expression c) above, is interpreted as "the product of F times H8 is added

to J9." However, if you wanted to add H8 and J9 together before multiplying their

sum times F, you would have to place parentheses around H8 + J9:

F * (H8 + J9)

In this case the addition is performed first because the operation inside the parentheses

is carried out before the outside multiplication.

Multiplication and division have equal priority and will be performed from left to

right. The same is true of addition and subtraction. If you look at line 40 again

40 S = P * (1 +R*T)

it should be clear that the parentheses are needed. However, inside the parentheses,

the expression:

1 + R *T

is calculated correctly because the multiplication has higher priority than addition.

Experiment #2 Compound Interest

If you invest P dollars at an annual interest rate r, compounded k times a year, then

after t years, your investment will have grown to the amount S:

S - P(l + r/k)*

A program will be written to calculate the value of S, for the following values of the

other variables:

P is $ 5,000

r is 12% per year

t is 5 years

k is 4 (i.e. interest is compounded 4 times a year.)

33

Enter the command NEW to clear the previous program from memory. Then type the
following program:

10 P = 5000
20 R = . 12
30 T = 5
40 K = a
50 S = P * (1 + R / K)

*
(T * K)

G0 PRINT "TOTAL IS $" 5 S

After the program is entered, execute it by entering the RUN command or pressing
(£4). The output from this program will be:

Even though the total is supposed to represent dollars and cents, the computer has
displayed the number with 14 significant digits, including 10 to the right of the
decimal place (because this is the precision of numeric variables in Model 100
BASIC). You will see later how to display numbers in dollars and cents format.

The expression in line 50

P * (1 + R/K)"(T* K)

uses addition, multiplication and exponentiation operators. The exponentiation operator
has the highest priority and will be performed before multiplication or division and of
course before addition and subtraction. Because of this priority, it was necessary to
place parentheses around the exponent

T*K
Otherwise, the computer would have calculated

P * (1 + R / K)
A
T

and then multiplied this expression by K.

Experiment #3 Compound Interest with
Keyboard Input

If you wanted to run the compound interest program with different values for the
variables, you would have to retype the appropriate lines in the program. Obviously
that isn't very practical, specially if you just wanted to figure the interest for several
values.

34

It would be more convenient if you could simply type in the values for the variables

as the program is being executed.

The program will be changed so that the value for P, the principal, can be entered

during execution. The values for the other variables will be assigned, as before, with

assignment statements.

Change line 10 to

10 PRINT "ENTER THE PRINCIPAL"?

and insert line 15

15 INPUT P

List the program to verify that it is:

10 PRINT "ENTER THE PRINCIPAL";
15 INPUT P

20 R = .12
30 T - 5

40 K = a
50 S = P * < 1 + R / K)

A
<T * K)

60 PRINT "TOTAL IS $" 5 S

Execute the program.

When the program executes, the following message (called a "prompt") will be

displayed:

ENTER THE PRINCIPAL?

and the computer will wait for you to enter the value for P. When a value for P is

entered, for example 5000, the program will execute as before and print out the total.

Be sure to press [ENTER) after typing the amount for P.

Here is what the output looks like:

ENTER THE PRINCIPAL? 5000
TOTAL IS $ 3030.5561733465

Line 10 prints the prompt message. The semicolon at the end of the line suppresses

the carriage return so that the next character printed will be on the same line.

Line 15 is the INPUT statement. When this statement is executed, a question mark is

printed and the computer will wait for you to enter a number from the keyboard. After

you type the number and press (ENTER) , the number will be assigned to the variable P
which appears after INPUT.

The remainder of the program is the same as before.

If the semicolon is left out in line 10, then the question mark and the number you type

will be printed on the next line below the prompt.

35

Experiment #4 Another Way to INPUT

The INPUT, statement is usually preceded by a prompt message to remind you what

value to enter. An optional form of the INPUT statement allows the prompt to be

printed without using a separate PRINT statement.

Delete line 15 (by entering just the line number 15) and retype line 10 as follows:

10 INPUT "PRINCIPAL"? P

This single line is equivalent to the previous lines 10 and 15. The word PRINCIPAL
will be printed immediately followed by a question mark. Then the Computer will

wait for you to enter the value for P. The ending quotation mark must be followed by

a semicolon, a comma cannot be used.

List the program. It should read:

10 INPUT "PRINCIPAL" 5 P

20 R = .12
30 T = 5
40 K = a
50S = P*(1+R/K)MT*K)
G0 PRINT "TOTAL IB $" 5 S

Execute the program. The following output occurs when you type 1000 for the

principal:

Run the program several times, entering different values for the principal.

Experiment #5 Compound Interest with More
Keyboard Input

In this experiment, the compound interest program will be changed so that the rate, as

well as the principal, can be input from the keyboard.

Delete line 20 by entering just the line number.

Retype line 10 as:

10 INPUT "PRINCIPAL* RATE"! P, R (ENTER)

36

Now list the program to verify that it is:

10 INPUT "PRINCIPAL* RATE"! P, R

30 T = 5

a® K = 4

50S=P*(1 + R/K)MT*K)
B0 PRINT "TOTAL IS $" ! S

When you execute this program, the following prompt will be displayed

PRINCIPAL* RATE?

In response, you should enter two numbers separated by a comma. For example:

PRINCIPAL»RATE? 2000. .14

and again the amount of the investment will be printed. The complete output will be:

This program illustrates another option of the INPUT statement. Values for more than

one variable can be assigned with a single INPUT statement. The variables should be

separated by commas and listed after the prompt. When the INPUT statement is

executed, you must type a value for each variable, separating the values with commas.

After the last value has been typed, you should press (ENTER) .

Two separate INPUT statements could have been used, the first for the principal P and

the second for the rate R as follows

10 INPUT "PRINCIPAL"; P
20 INPUT "RATE";R

However, it is more convenient to use just a single statement as was done in the

program.

Experiment #6 Compound Interest with All

Variables Input

The previous program will be rewritten so that the values for all the variables can be

entered from the keyboard. The program will also be changed so that it will not

terminate after the total is printed. Instead, the program will ask again for values for

the variables so that the amount of the investment can be calculated for any number of

different values.

37

Delete line 40 by entering just the line number and retype line 30 as follows:

30 INPUT "TIME, NUMBER DF PERIODS"! Tt K (ENTER)

Then add two new lines:

70 PRINT (INTER)

80 GOTO 10 (ENTER)

List the program to verify that it is:

10 INPUT
30 INPUT
50 S = P

G0 PRINT
70 PRINT
80 GOTO 10

"PRINCIPAL. RATE" 5 P. R
"TIME, NUMBER OF PERIODS"
* (1 + R / K)"(T » K)

"TOTAL IS $" 5 S

The program will prompt you for values for all four variables. Here is an example of

the output of the program with the following inputs:

The program will continue to ask for values for the variables until you terminate the

program manually by pressing (BREAK) .

Line 10 prints a prompt and allows you to enter values for the principal P and

the rate R.

Line 36 prints a prompt and allows you to enter values for the time T and the number
of periods K. Lines 10 and 30 could have been combined into one line if desired.

Line 66 prints out the message "TOTAL IS $" and the value of S, the total of

principal and interest at the end of T years.

Line 76 skips a line on the display after the output from line 60. This spaces the

output so that it doesn't run together vertically.

Line 86 transfers control back to line 10, where the program starts over again. This

allows you to input a variety of values for the variables without entering the RUN
command each time.

38

Experiment #7 Personalizing the Output —
Printing a Name
The compound interest program as it currently exists is:

10 INPUT "PRINCIPAL, RATE" 5 P» R
30 INPUT "TIME* NUMBER OF PERIODS"? T» K

50 S = P * < 1 + R / K) MT * K)
60 PRINT "TOTAL IS $" 5 S
70 PRINT
80 GOTO 10

Add line 40 as follows:

a0 INPUT "NAME"; N$

and change line 60 to

S0 PRINT "TOTAL FOR "

Add line 65

G5 PRINT N*5" IS *" 5 S

List the program to confirm it is

10 INPUT "PRINCIPAL, RATE"! ft R
30 INPUT "TIME* NUMBER OF PERIODS"? T» K

40 INPUT "NAME"; N$
50S = P*<1+R/K)-MT*K)
S0 PRINT "TOTAL FOR"
S5 PRINT N*i" IS $" 5 S
70 PRINT
80 GOTO 10

When you execute the program you will be prompted, as before, for the principal,

rate, time and number of periods. In addition, you will be prompted for a name. After

this data is entered, the name and the amount of the investment will be printed. Run
the program and enter the data as indicated below (of course, you may enter any other

name you wish):

Execute the program several times with various numeric values and names. To
terminate execution, (BREAK) must be pressed.

Lines 10 - 30 allow you to enter values for the numeric variables in the program.

39

Line 40 is another INPUT statement. This time, however, you are expected to enter a

name instead of a number. The name which you enter is stored in the variable N$.

This variable, N$, is an example of a "string variable." The name that you type, for

example, JANICE SMITH, is called a "character string."

Line 50 calculates the total of principal and interest.

Line 60 prints the message "TOTAL FOR."

Line 65 prints the name stored in N$ followed by the word IS, the symbol $, and the

amount of the investment.

Line 70 skips a line (PRINTs a blank line).

Line 80 transfers control back to line 10.

A string is any sequence of keyboard characters, for example

JOHN SMITH
1023 N. MAIN STREET
1982

MACROCORP
MARCH 12, 1984

$120.95

In some cases the string may consist entirely of digits (e.g. 1982), but it can still be

considered a string as well as a numerical constant.

A valid string variable is any numeric variable followed by a dollar sign ($). The
following are all valid examples of string variables:

N$, A3$, DA$, ADS, ST$

In line 40, it is essential that the variable be a string variable. If you tried to use a

numeric variable, the computer would continue to ask for data until a numeric constant

was entered.

The assignment of the name to the string variable N$ was made with the INPUT
statement. It is possible to use assignment statements with string variables and

constants just as with numeric variables and constants. For example, the following

statement:

100 A* = "RADIO SHACK"

assigns the string RADIO SHACK to the string variable A$. When using an

assignment statement, it is necessary to enclose the string in quotes, as shown above.

Each string variable can hold up to 256 characters. If the total number of characters

assigned to string variables exceeds 256, you must set aside additional space. This is

done with the CLEAR statement. For example, the following line could be added to

the program:

5 CLEAR 300

This particular instruction allocates space for 300 characters. If you attempt to store

more than 300 characters in N$, an error will result and the program will terminate.

When the Computer is turned on, space for 256 characters is allocated automatically.

40

If you require more, then the CLEAR statement must be used. Since it is unlikely a

name will be longer than 256 characters, the above program should not need the

CLEAR statement.

If, on the other hand, your program had twenty string variables, each of which is used

to hold a name, then the maximum of 256 would probably be exceeded. In this case,

the CLEAR statement would be needed.

Experiment #8 Mortgage Payment Calculation

Clear working memory with the NEW command and type the following program from
the keyboard:

10 INPUT "INTEREST RATE (0 - 100)"! R

20 R = R / 100
30 INPUT "AMOUNT OF LOAN "5 A

40 INPUT "NUMBER OF YEARS"! T

50 N = 12 * T

60 I = R / 12
70 MP = (1 - (1 + I) "(-H)) / I

80 MP = A / MP
90 PRINT "MONTHLY PAYMENT IS *"i MP

When you execute this program, you will be prompted for the interest rate, the

amount of the loan and the length in years of the loan. If the interest rate is 12% then

12 should be entered, not . 12. Here is an example of the execution of the program.

Line 10 allows the interest rate to be entered and stores it in variable R.

Line 20 converts the interest rate to a decimal value.

It is important to note that the equals symbol (=) in a BASIC program means "assign

the value computed on the right side to the variable on the left side." It does not

mean the right side is equal to the left side as in an algebraic equation. Thus the

assignment statement:

R • = R / 100

means to compute the right side, R / 100, and then store the result back in R.

Line 30 allows the amount of the loan to be entered and stored in numeric variable A.

Remember that numeric values are entered without a comma.

41

Line 40 allows the length of the loan (in years) to be entered and stored in variable T.

Line 50 computes the number of payment periods (months) of the loan and stores the

value in variable N.

Line 60 computes the interest rate per month and stores it in variable I.

Lines 70 - 80 compute the monthly payment. The computation was done in two lines

rather than one, to avoid having a long, complicated expression in a single line.

Recall that the equals symbol (=) means to assign the value computed on the right

side to the variable on the left side. In line 80 the value of A/MP is computed and
then stored in MP.

Line 90 prints the amount of the monthly payment.

Run the program several times with your own data. Have you ever wondered what

effect a change in the interest rate would have on your mortgage payment? Just run

the program and vary the interest rate while keeping the other variables constant.

Experiment #9 Calculation of Total Amount and
Loan Balance

In addition to calculating the monthly mortgage payment, as in the last experiment,

you might wish to compute the total amount you have to pay. This is done by

multiplying the number of pay periods N by the monthly payment MP. Type in lines

100 and 110 as follows:

100 TA = N * MP
110 PRINT "TOTAL AMOUNT PAID IS *"; TA

Another calculation that can be made is the determination of the loan balance or

outstanding principal, after a certain number of payments. Enter the following lines:

120 INPUT "CURRENT YEAR OF LOAN"! Y

130 M = 12 * Y

140 B = (1 - (1 + I
)

* (M-N)) / I

150 B = MP * B
1B0 PRINT "PRINCIPAL REMAINING IS *"5 B

Here is a listing of the the complete program:

10 INPUT "INTEREST RATE (0 - 100) "5 R
20 R = R / 100
30 INPUT "AMOUNT OF LOAN"! A
£\Q INPUT"NUMBER OF YEARS"! T
50 N = 12 * T
B0 I = R / 12
70 MP = (1 - (1 + I)

" (-N)) / I

80 MP = A / MP
90 PRINT "MONTHLY PAYMENT IS *"5 MP
100 TA = N * MP
110 PRINT "TOTAL AMOUNT PAID IS *"S TA
120 INPUT "CURRENT YEAR OF LOAN" 5 Y
130 M = 12 * Y

42

140 B = (1 - (1 + I)
- (M-IM)) / I

150 B = MP * B
1G0 PRINT "PRINCIPAL REMAINING IS *"5

Here is an example of the execution of this program:

This example would be typical of an $ 89,000 home purchased with a conventional

80% mortgage at 12.5% over 30 years. The amount of the loan would be $ 71,200.

The discouraging result of running this example is that the total you will have to pay

over the 30 years is $ 273,559.51. By entering a current year of 10, you can see that

the principal remaining unpaid after 10 years is still $ 66,883.23. This means that in

10 years you have paid

S 71,200 - $66,883.23 = $4,316.77

toward the original amount borrowed.

What you have learned:

In this lesson, the use of string and numeric variables has been illustrated. Arithmetic

expressions have been used in the calculation of interest and mortgage rates. The
INPUT statement was found to be a very convenient method of entering data into the

Computer.

43

IF/THEN/
ELSE

Lesson #4 Sales Commissions
It is often necessary to write programs that will do one task if a condition is true and
another if the condition is false. This is called branching. In this lesson you will learn

why this concept is important and how to implement branching in your programs.

PRINTUSING

SHBS

?EAD/DATA>
RESTORE

1

Experiment #1 Sales Commissions

A salesman is to receive a flat rate commission of 15% of his total sales. However, if

the total sales is over $2000, then he will receive an additional 20% of the amount
over $2000.

The formulas are as follows:

Commission = .15 * sales if sales are less than 2000

Commission = .15 * sales + .20 * (sales - 2000) if sales are over 2000

Clear memory with the NEW command and type the following program:

10 INPUT "AMOUNT OF SALES" 5 ST
20 CM = ST * .15
30 IF ST > 2000 THEN CM = CM + ,20 * (ST - 2000)
40 PRINT "COMMISSION IS"!CM

Execute this program.

The program begins by asking you to enter the amount of sales. Type:

1000 (HUH)

to compute the commission on one thousand dollars sales. Note that a dollar sign is

not entered. The computer will respond with the message

COMMISSION IS 150

indicating a commission of $150.

Since the sales were less than $2000, the commission is a straight fifteen percent.

RUN the program again and this time when you are asked to enter the amount of

sales, type:

3000 (HUB)

to compute the commission on three thousand dollars sales. The computer will respond

with the message:

COMMISSION IS B50

indicating a commission of $650. Since the sales exceed $2000, the commission will

be 15% of $3000 plus 20% of $1000 (the amount exceeding $2000).

Try running the program using your own sales data and confirm that the program
computes the commission properly.

45

How the Sales Commissions Program Works

RUN,

KEYBOARD
INPUT
SALES

AMOUNT
OF SALES?

20

COMPUTE 15%
COMMISSION

COMPUTE
ADDITIONAL
COMMISSION

COMMISSION IS

Figure 4-1 . Flowchart of Sales Commission Program

When you execute the program, you will be prompted for the total sales. The
commission then will be computed according to the above scheme and printed.

Line 10 allows you to enter the total sales, which is stored in the variable ST.

Line 20 computes the flat rate sales commission and stores it in the variable CM.

Line 30 contains a new statement, the IF/THEN statement. As can be seen from the

flow chart in figure 4-1, the program must' branch after line 20.

If the sales exceed $2000, an additional computation must be performed. However, if

this is not the case, then the sales commission is already calculated in line 20 and no

additional computation is required.

46

To accomplish this, the program must be able to test whether or not sales (ST) is

greater than $2000, and branch accordingly. This can be done with the use of the

IF/THEN statement.

The inequality

ST > 2000 •

appearing in line 30 (between IF and THEN) is called a "condition." If this condition

is false, then the next statement to be executed is in line 40. On the other hand, if the

condition is true, then the statement following THEN:

CM - CM + .20 * (ST - 2000)

will be executed before control passes on to line 40. In other words, if total sales are

not greater than 2000, no additional calculations are performed in line 30. But, if total

sales are greater than 2000, the additional commission is calculated and added to the

original flat rate commission.

The general format of the IF/THEN statement is

IF "condition" THEN "statement"

where "statement" is executed only when "condition" is true. In either case, the

next line executed is the one following the IF/THEN statement.

The condition is usually the comparison of two numeric or string expressions. Two
numeric expressions are compared with the use of a relational operator. In this case,
">" in line 30 is the relational operator.

Here is a table of numeric relational operators:

meaning

greater than

less than

not equal to

greater than or equal to

less than or equal to

Assuming the variable A has the value 2, the logical values of some conditions are

given below.

condition logical value

A > 1 true

A < - 1 false

A < > 1 true

A >= 2 true

A < = false

Here are some more examples of valid IF/THEN statements

55IFA*B-C<D THEN A = B

65 IF 5.6 < > AB - 4.6 THEN STOP

75 IF CD/AC < > 1 THEN CD = AC

numeric operator

>
<
< > or > <
> = or = >
< = or = <

47

Each condition can contain only one relational operator. Thus the following condition

is not allowed:

A < > B < > C

It should be clear that IF/THEN is a very powerful statement because it allows the

program to carry out different tasks and functions, depending upon the value or values

of numeric expressions.

Experiment #2 Printing Dollars and Cents

One unsatisfactory aspect of the Sales Commision program is that the value printed for

the commission does not directly indicate dollars in the customary fashion.

Run the program and enter the value 1763.89 for the total sales. You will see that

264.5835 is printed out for the amount of the commission. The output of the program

is a decimal number that sometimes contains more than two digits to the right of the

decimal point.

It would be much neater if the commission were printed to the nearest cent each time.

One way of accomplishing this is to use a different print statement. Instead of using

PRINT, the PRINTUSING statement can be used to format the output.

Make the following changes to the program:

Change line 40 as follows:

40 PRINT "COMMISSION IS "5

and add a new line 50

50 PRINTUSING "#*##.**"» CM

Line 40 will display the message

COMMISSION IS

and line 50 will print the value of the commission. Now if you execute this revised

program you will see that the commission is printed, as desired, rounded to the nearest

cent.

For example, run the program and enter 1763.89 as the sales amount. This time the

commission amount prints as 264.58.

The string enclosed in quotes,

is called a format specifier, and it indicates how a number is to be printed.

Since two of the # symbols appear to the right of the decimal point, exactly two

digits will be printed to the right of the decimal point. By the same token, a maximum
of four digits to the left will be printed. (Fewer than four digits to the left of the

decimal point may be printed, depending on the size of the number.)

48

Since there are six # symbols and one decimal point specified, a total of seven

columns will be used for the printing of the number. The number will be printed

' 'right justified' ' in this seven column field, meaning that there may be some blanks in

the left most columns, but not in the right-most.

Instead, of using a constant string, such as "####.##", it is permissible to use a

string variable for the format specifier. For example, the program can be changed as

follows

45 A$ = "»#»#,«»"
50 PRINTUSING A$ 5 CM

This will give the same output as before. Again, the value printed for the commission

will be rounded to the nearest cent. Note that the format specifier, whether it is a

string or a string variable, is always followed by a semicolon.

For some more examples, suppose CM = 1416.3812 (actual value as computed) and

this is printed out with line 50 above. The following table gives the output for various

format specifiers

format specifier output

A$ = "####.##" 1416.38

A$ = "####.#" 1416.4

AS = "#####.###" 1416.381

A$ = "####.#####" 1416.38120

Experiment #3 Dollar Signs

There are other possibilities for format specifiers. Change line 45 in the program so

that it is:

45 A$ = "$#»»»»#,»#"

Now run the program and input a variety of values for the sales . In each case there

will be a dollar sign ($) printed to the left of the field (9 column). In many cases there

will be some blanks between the $ and the left most digit of the number.

Now change line 45 so that it is:

45 A$ = "$$»###»»###"

Run the program with a sales amount of 1111. As you can see, the $ is now printed

just to the left of the number $166.65. The use of two dollar signs to the left of the

numeric field specifier instructs the computer to print a dollar sign immediately to the

left of the leading digit.

Experiment #4 Checks

Many times, payroll checks are printed with asterisks padding the leftmost columns of

the field.

Change line 45 in the previous program to:

45 A* = "#*$######,##"

49

Run the program with a sales amount of 1 1 1 1 . In this case you can see that in the

output of the commission

*****$1BB # B5

the unused positions are, indeed, padded with the "*" symbol.

Large dollar amounts are usually printed with commas. Try changing line 45 to

45 A$ = "**$#*# »##* **"

Run the program with a sales amount of 123456. In the output of the commission,

****42 ,809. E0

the digits are now separated with a comma to make the reading of the number easier.

If your number requires more columns than you have specified, for example printing

34.56 with "#.###", the number will be printed anyway, but the symbol "%" will

be printed to the left of the number to indicate the field overflow.

Experiment #5 Sales Commission Revisited

Change the sales commission program so that it is computed according to the

following scheme:

if sales are $2000 or under, commission is 15% of sales

if sales are over $2000, commission is 20% of sales

The program must now make two different computations depending upon the total

sales.

The program is illustrated with the flow chart in figure 4-2. The branching can be

accomplished with the use of a variation of the IF/THEN statement, called the

IF/THEN/ELSE statement.

50

KEYBOARD

(run)

INPUT
SALES

AMOUNT
OF SALES?

20 YES NO

COMPUTE 15%
COMMISSION

COMPUTE 20%
COMMISSION

30, 40, 50 I
PRINT

COMMISSION H COMMISSION IS

I
END

Figure 4-2. Flowchart of Experiment 5

Modify the program by deleting line 20 and replacing line 30:

30 IF ST <= 2000 THEN CM = , 15 * ST ELSE CM
= .20 * ST

Since this line requires more than 40 columns, it will not fit on a single line of the

display of your Model 100, but will overflow to the next line. A line in your program

may contain up to 255 characters, in which case it will extend over several lines of the

display.

51

A line is terminated only when you press (ENTER] and not at the end of a display line.

List the program to confirm that it is:

10 INPUT "AMOUNT OF SALES"! ST
20 IF ST <= 2000 THEN CM = .15 * ST ELSE CM = .20 * ST
40 PRINT "COMMISSION IS"

5

45 A$ = "**$###>#»#.##"
50 PRINTUSING A$ 5 CM

Execute the program.

When prompted for the amount of sales, enter 1000. The commission will be

computed as $150.00, which is a straight 15%.

Run the program again and enter a sales of 3000. This time the commission will be

computed as $600.00 which is a straight 20%.

The IF/THEN/ELSE statement is used to execute one of two different statements

depending upon the logical value of the condition.

If sales are less than or equal to 2000, the commission is calculated as 15% of sales

and control passes to line 40. However, if sales are over 2000, then the statement

following ELSE is executed instead, so that the commission is calculated as 20% of

sales and again control passes to line 40.

The general format of the IF/THEN/ELSE statement is:

IF "condition" THEN "statement 1" ELSE "statement 2"

"statement 1" is executed-if "condition" is true, but "statement 2" is executed

if "condition" is false

In either case, control passes to the next line in the program. The statements executed
can be any valid BASIC statements. Here are some more valid examples of the

IF/THEN/ELSE statement:

100 IF A = THEN A = B + 1 ELSE A = B - 1

200 IF A + B < 100 THEN A = B ELSE A =

Experiment #6 Computing Commissions for

Several Salesmen

The Commission Sales program, as it currently exists, will compute the commission
for one salesman and terminate. To compute the commissions for several salesmen, it

must be modified.

List the program to confirm that it still looks like this:

10 INPUT "AMOUNT OF SALES" 5 ST
20 IF ST <= 2000 THEN CM = .15 * ST ELSE

CM = .20 * ST
40 PRINT "COMMISSION IS"!
45 A* = "**$##*>###,##"
50 PRINTUSING A* ? CM

52

ST
15 * ST ELSE

N$!i" IS "

;

Line 10 will be changed so that the name of the salesman can be entered along with

the sales amount.

10 INPUT "NAME. SALES"! N* » ST

The name will be placed in the string variable N$ and the sales amount in the numeric

variable ST. Line 20 will correctly calculate the commission, but line 40 must be

altered so that the name is printed. Change line 40 to:

40 PRINT "COMMISSION FOR "5 N* 5

" IS "5

If the name entered is SMITH, then line 40 will print

COMMISSION FOR SMITH IS

and line 50 will print the amount of the commission after the word IS.

Here is a listing of the program after the changes have been made:

10 INPUT "NAME* SALES"! N$

»

20 IF ST <= 2000 THEN CM =

CM = ,20 * ST
40 PRINT "COMMISSION FOR "!

45 A* = "**$«»«>«*«,**"
50 PRINTUSING A*! CM

If this program were executed, it would compute the commission of a single salesman

and execution would terminate. If the program is to compute more than one sales

commission, it must branch back to line 10. This can be accomplished with the use of

a GOTO statement after line 50. Type in a new line:

S0 GOTO 10

Now the program is complete:

10 INPUT "NAME* SALES" 5 N$ » ST
20 IF ST <= 2000 THEN CM = .15 * ST ELSE

CM = ,20 * ST
40 PRINT "COMMISSION FOR " !N*5" IS "!

45 A$ = "**$###>***.#*"
50 PRINTUSING A* 5 CM
S0 GOTO 10

This program illustrates a concept in programming called "looping." This means that

a block of statements are repeated several or perhaps many times in a program. In the

program above, the entire program is repeated, each time with a different salesman

and sales total. It should be noted that the program is an "infinite loop," which

means it will not terminate and must be manually terminated by pressing (BREAK) .

Try running the program and entering several names and sales amounts. Be sure to

press (BREAK) when you wish to terminate execution.

53

Experiment #7 How to Escape From an Infinite

Loop

It is easy to add some statements so that programs that contain infinite loops will

terminate upon request.

In the Sales Commission program, for example, the sales total will never be negative.

But you can modify the program so that it terminates whenever a negative value for

sales is entered.

Type the new line:

15 IF ST < THEN STOP (INTER)

The STOP statement, terminates execution and has the same effect as pressing

(BREAK) . The program will terminate if ST is negative, but continue if it is not.

Run the program.

When prompted to do so, enter a dummy name (such as END) and a negative sales

amount (such as - 1). Note that the program terminates immediately without

computing any commission.

The dummy name was necessary because the INPUT statement in Line 10 requires

you to enter two input quantities. Since a negative sales amount terminates execution,

the name you enter will not be used.

You can have more than one STOP statement in your program. Of course your

program need not have any STOP statements in it at all.

Experiment #8 Individual Commissions for the

Salesmen

The Sales Commission program calculates every salesman's commission using the

same rate. Now we will modify the program so that each salesman has his own
commission rate. Here is a list of salesmen and their commission rates:

Name Rate

ADAMS 15%
JONES 16%
LEE 18%
SMITH 20%
VINSON 14%

When any of the above names is entered, the program must look in the table to find

the corresponding rate before the commission can be calculated. Make the following

changes to the program:

Retype line 20 as follows

20 READ Nl* y CR

54

and add lines 24, 26 and 28

24 IF Nl* <> N* THEN GOTO 20
2B CM = ST * CR
28 RESTORE

Delete line 30.

Now the only remaining change is to add the table to the program. Type the following

line:

70 DATA ADAMSr, 15 , JONES , . 18 ,LEE , . 18 ,SMITH , , 20 ,

VINSON, .14

List the program to confirm that you have:

10 INPUT "NAME, SALES"? N* > ST
15 IF ST < THEN STOP
20 READ Nl*» CR
24 IF Nl* <> N* THEN GOTO 20
2G CM = CR * ST
28 RESTORE
40 PRINT "COMMISSION FOR "5 N* 5

"

IS "5

45 A* = "****#*»*#*##"
50 PRINTUSING A* 5 CM
80 GOTO 10
70 DATA ADAMS ,. 15 » JONES .. 18 » LEE ».. 18 .SMITH ,.20 »

VINSON*. 14

Run this program.

Be sure to enter one of the five names listed in the table. The program will compute
and print the commission for that salesman. Continue to input names in any order and

their corresponding sales totals. To end the program enter a dummy name and

negative value for the sales amount.

Line 20 reads the first name (ADAMS) listed in the DATA statement in line 70 and

places it in the string variable Nl$. It reads the first commission rate (.15) and places

it in the variable CR.

Line 24 compares the name in N$, which was entered in line 10, to that in Nl$. If

they are different, the program jumps back to line 20 which then reads the next name
and commission rate in the DATA statement. The program continues looping in this

way until a match is found. When this happens, CR will contain the correct

commission rate for the salesman.

Line 26 computes the commission for the salesman.

Line 28 is the RESTORE statement. When this statement is executed, the computer

will go back to the first item in the data list. Therefore the next time a READ
statement is executed, it will use the first item in the DATA list.

Without RESTORE, the reading of the data would continue where it left off from the

time before. If the names are entered in an arbitrary order, the data list must be read

from the beginning each time.

The remainder of the program is the same as before, with the exception of line 70.

Line 70 contains the DATA statement from which the names and rates are read. This

55

statement can be placed anywhere in the program, but it is traditional to place it either

at the beginning or the end of the program.

What would happen if a name is entered, which is not in our list?

Run the program and enter the name CARTER and a sales amount of 1000. The
program continues reading names in the DATA list until it runs out of data. The
program terminates and displays the error message:

?0D ERROR IN 20

indicating that an OUT OF DATA error occurred in line 20. The program tried to read

past the last name and rate in the list.

Additional names and rates can be added to line 70 or placed in another DATA
statement. The computer treats multiple DATA statements as one continuous list.

What you have learned:

In this lesson you have learned how a program can be made to BRANCH and

accomplish different tasks depending upon the value of a variable or expression. This

can be done by using the IF/THEN statement. The PRINTUSING statement was used

to format the output so that it was presented in a more reasonable fashion than would
be the case with just the PRINT statement. You saw how to use the STOP statement

to terminate execution under program control. You also learned that the READ/DATA
statements often provide a convenient method of inputing data to the program,

especially frequently referenced data like tables and lists.

56

DAY*

Lesson #5 Day, Time and Date
Your Model 100 has a number of string functions which allow you to manipulate

string constants and string variables in various ways.

In this lesson you will learn how to use some special string functions that "return"
the day, time and date. Also, other string functions will be used to extract information

from string constants and string variables and to output character data.

Experiment #1 What Day is it?

DAY$ is a string function which returns the day of the week. If you type:

PRINT DAY* CENTER)

you will see that the first three letters of the present day are displayed. For example, if

today happens to be Thursday, the Computer will display

Thu

Note: You must initialize the day sometime prior to using the DAYS function. Once
initialized, the day will be automatically updated.

If you have not already initialized the day, this can be done by entering the following

command:

DAY$ = "xxx"

where "xxx" are the first three letters of the current day. For example, if today is

Monday, enter

DAY* = "MON" (ENTER)

While the DAY$ function returns the first three letters of the day of the week, it is

often desirable to print the full name of the day (e.g. Thursday, not Thu).

The following program, which we'll call DAY, accomplishes this. Refer to Figure 5-1

for a flowchart of the program.

Clear working memory with the NEW command and type the following program in

from the keyboard.

10 READ D*
20 IF LEFT*(D**3> » DAY* GOTO 40
30 GOTO 10
40 PRINT "TODAY IS "

5 D*
50 DATA Sunday » Monday* Tuesday* Wednesday
G0 DATA Thursday* Friday* Saturday

Execute this program.

The program will output the day of the week. Here is an example of the output:

TODAY IS Thursday

STRING*

MAL

ISSUE

MID*

RIGHT*

LEN

57

How program DAY works:

10

READ DAY
ASSIGN TO D$

TODAY IS

Figure 5-1 . Flowchart of Program DAY

Line 10 A string from line 60 or 70 is read and assigned to the string variable D$.

The first time line 10 is executed, the string Sunday will be assigned to D$, the

second time line 10 is executed, Monday will be assigned to D$, etc.

Line 20 The IF / THEN statement compares DAY$ with the first three characters

stored in D$. DAY$ contains the first three characters of the current day (SUN,
MON, etc.). LEFT$(D$,3) returns the three leftmost letters of the string stored in D$.
If a match occurs, the program jumps to line 40, otherwise line 30 is executed next.

Note that the IF statement does not contain the keyword THEN. The keyword is

optional in an IF statement when it is followed by a GOTO statement.

Line 30 The GOTO statement transfers control back to line 10 where the next day will

be read from the data list.

Line 40 The PRINT statement displays the message "TODAY IS" followed by the

day of the week.

58

Lines 50 - 60 These DATA statements contain the list of the days of the week.
Lowercase letters must be used for the second and third characters to correctly match
DAYS, which stores the first three characters of each day of the week (an uppercase
and two lowercase letters).

This program uses two string functions, DAYS and LEFTS. Recall that DAYS returns

the first three letters of the day of the week.

The function LEFT$(D$,3) returns the first three characters of the string stored in D$.
For example, if D$ has Thursday assigned to it, then

PRINT LEFT$(D$,3)

would display

Thu

The number 3 indicates the number of characters to be returned. Again assuming that

D$ contains Thursday, then

Command Displays as

PRINT LEFT$(D$,1) T
PRINT LEFT$(D$,2) Th
PRINT LEFT$(D$,5) Thurs

etc.

LEFTS is a string function of two arguments, the string (D$) and the number of

characters to be returned. The first argument need not be a string variable, it can also

be a string constant. For example,

PRINT LEFT$("Model 100" ,3)

would display as:

Mod

When a string constant is used as the argument, it must be enclosed in quotation

marks.

The last character in the name of both functions, LEFTS and DAYS, is a dollar sign

($) because the quantity returned, in both cases, is a string.

Experiment #2 Centering the Day

Program DAY is to be changed so that the output will consist of the day of the week,
centered in the line with an equal number of asterisks (*) printed on both sides.

Make the following changes:

Retype line 40 as:

40 L = LEN(D$)

and type four new lines:

5 CLEAR 100
aa A* = BTRING$((40 - L)/2t "*")

4E D$ = A* + D$ + A*
48 PRINT D*

59

Now list the program to confirm that it is:

5 CLEAR 100
10 READ D*
20 IF LEFT*(D*»3) = DAY$ THEN GOTO 40
30 GOTO 10
40 L = LEN(D*)
44 A* = STRING*< (40 - L)/2» "*")

46 D* = A* + D* + A*
48 PRINT D*
50 DATA Sunday* Monday * Tuesday > Wednesday
G0 DATA Thursday* Friday* Saturday

Execute the program by entering the RUN command. If the current day is Thursday,

the following will be output:

If the current day is Friday, then the output will appear as:

In each case, the word is centered in the line and an equal number of asterisks are

printed on both sides to fill the line. If the current day is Tuesday, which has 7

characters, then 16 asterisks are printed on both sides so that 39 columns are used.

The function LEN returns the number of characters in a string variable or string

constant. For example if D$ contains Friday, then the function LEN(D$) returns the

value 6, and LEN("Friday") also returns a 6.

Since the value returned by the function LEN is an integer, there is no dollar sign ($)

attached to the function name. In line 40, the number of characters of the string stored

in D$ is assigned to L. If the current day is Friday, then L has 6 assigned to it.

60

Since each line has 40 print columns, the number of asterisks to be printed on each

side of the day is

(40 - L)/2.

For example, if the current day is Friday, 17 asterisks must be printed before and after

the word Friday.

In line 44, the function STRINGS is used to construct a string of asterisks of the

correct length and assign it to the variable A$. Again, if L has the value 6, then

(40 - L)/2 = 17

and STRING$((40 - L)/2,"*") will be a string of 17 asterisks. If the current day is

Tuesday, then L = 7 and

(40 - L)/2 = 16.5

This value will be truncated to 16 in the STRINGS function so that A$ will have

length 16.

The general form of the STRINGS function is

STRING$(r, "x")

which constructs a string consisting of r repetitions of the character x.

The argument r can be a numeric constant, variable or expression. For example, if

J = 3andM = 2

Command Displays as

PRINT STRING$(5, "#") #####
PRINT STRING$(J, "X") XXX
PRINT STRING$(J-M,"&") &

Line 46 illustrates the concatenation operator + . The strings A$, D$ and A$ are

joined together to form a new string which is then assigned to the variable D$. The
concatenation operator can be used with string constants or string variables. For

example:

A$ = "RADIO " + "SHACK"

concatenates the two strings

"RADIO " and "SHACK"

together to form a new string

"RADIO SHACK"

and assigns it to the string variable A$.

Note that in line 46, D$ appears both on the left and the right side of the equal sign.

Thus the old value which was assigned to D$ is replaced by the new string, which is

printed in line 48.

61

Experiment #3 What time is it?

Another useful feature of your Model 100 Computer is the string function TIME$,
which returns the time as a string of the form

hh:mm:ss

For example, if the time is exactly 1:05 PM, then the following command:

PRINT TIMES

would print

13:05:00

The first two digits indicate the hour (1 PM), the second two digits the minutes; (5

minutes after 1), and the last two digits the seconds.

The clock is a 24 hour clock, so the hours will range from 00 to 23, with 00
indicating midnight.

Note: The time must be initialized prior to using the TIMES function. Once set, it will

keep the correct time just like a clock. If you have not already initialized the time,

you may do so by entering the following command:

TIMES = "hh:mm:ss"

where hh is the hour, mm the minute, and ss the seconds. The hour is in 24 hour

format, so that 3 PM is hour 15. For example, if the current time is 3:05 PM, type

TIME$ = "15:05:00" (ENTER)

The following program will convert the string returned by TIMES, for example

14:18:00, to the customary format, 2:18 PM.

Clear the previous program from memory with the NEW command and then type the

following program:

10 HH* = LEFT*(TIME* ,2)

20 HH = VAL<HH*>
30 IF HH>= 12 THEN A* = " PM" ELSE A* = " AM"
40 IF HH > 12 THEN HH = HH - 12
50 HH* = STR*(HH)
60 MM* = MID*(TIME*»4»2)
70 T$ = HH* + " :

" + MM* + A*
80 PRINT "THE TIME IS"? T*

After the program has been entered, execute it with the RUN command. An example

of the output is

THE TIME IS 1:05 PM

Line 10 The first two characters in TIMES are assigned to the string variable HH$.
These two characters designate the hour. For example, if it is 1:05 PM, then HH$ will

contain the two characters 13. Since LEFTS returns a string, these two characters form

a string even though they are numerical digits. Thus they cannot be assigned to a

numeric variable.

62

Line 20 The string assigned to HH$ is converted to a numerical value by the VAL
function. This numerical value is assigned to the numeric variable HH. Using the

previous example, HH would have the number 13 assigned to it. Without the VAL
function, it would not be possible to make this assignment.

Line 30 This statement determines whether it is AM or PM and assigns an appropriate

string value to A$. The value stored in HH is compared to the numeric constant 12.

Only a numeric variable can be used in this way. The use of HH$ would have

produced an error and it was for this reason that the string stored in HH$ was changed

to a numeric constant and assigned to the numeric variable HH.

Line 40 The hour value is converted from a 24 hour format to a 12 hour format. For

example, hour 13 would be converted correctly to 1 (PM). In this line, as well in the

previous line, the variable must be a numeric variable. The statement:

HH$ = HH$ - 12

is illegal and would produce an error.

Line 50 This line uses the STR$ function to convert the numeric value stored in HH
back to a string which is then assigned back to the string variable HH$. This will be

concatenated later with another string. In order to do this, a string variable must be

used.

Line 60 This line uses the MID$ function to read the two minutes digits from TIMES
and stores this two-character string in the string variable MM$. Note that the minutes

are the 4th and 5th characters in the string:

13:05:00

MID$(TIME$,4,2) returns two characters starting with the 4th from the left.

Line 70 In this line, the string to be printed is concatenated together from the

variables HH$ (hour), MM$ (minutes), and A$ (AM or PM). A colon is inserted

between the hour and minutes.

Line 80 The message "THE TIME IS" is displayed followed by the time.

Here are some examples of TIMES and the resulting output of the program:

TIMES OUTPUT
10:15:12 THE TIME IS 10:15 AM
17:08:55 THE TIME IS 5:08 PM
03:18:43 THE TIME IS 3:18 AM

Note that a leading zero is not printed for the hour. This leading zero is lost when the

VAL function is applied.

The function VAL converts a string constant or variable to a numeric value. The
following examples illustrate this function:

string VAL
123ABBA 123

2.3CA987 2.3

567.4 567.4

The leftmost characters, up to the first character which cannot be part of a number,

are converted to a number. This function is useful when it is necessary to use a

63

numeric string constant in a numeric expression. The number in string form must be

converted to a numeric constant before it can be used in a numeric expression.

The STR$ function is the inverse of the VAL function. It converts a numeric constant

or variable to its string form. This is useful when you want to concatenate the number
with another string as was done in this program.

The MID$(string, p, n) returns the sub-string of length n starting with the p-th

character. This is illustrated with the following examples:

string p n MID$(string,p,n)

ABCDEFGH 5 3 EFG
JUNE 18, 1983 10 2 19

RADIO SHACK 7 5 SHACK

Experiment #4 Printing the Seconds

The program in Experiment 3 did not print the seconds even though they are returned

by TIME$. The program will be changed so that the output will appear as:

THE TIME IS 1:05 PM AND 28 SECONDS

Make the following changes to the program:

Type a new line:

65 SS$ = RIGHT*(TIME*,2)

and change line 70 to

70 T* = HH* + ":" + MM* + A$ + » AND " +

SS$ + " SECONDS"

List the program to confirm that it is:

10 HH* = LEFT*(TIME* »2)

20 HH = UAL(HH*>
30 IF HH >= 12 THEN A* = " PM" ELSE A* = " AM"
40 IF HH > 12 THEN HH = HH - 12
50 HH* = STR*(HH)
E0 MM* = MID*(TIME*,4,2>
E5 SS* = RIGHT*(TIME*,2)
70 T* = HH* + ":" + MM* + A* + " AND " + SS*

+ " SECONDS"
80 PRINT "THE TIME IS" ! T*

Execute this program.

The output will depend on the time. If TIMES = 17:23:56, then the following will be

displayed;

THE TIME IS 5:23 PM AND 5G SECONDS

Line 65 The RIGHTS function is used to return the two rightmost characters stored in

TIMES. These characters are the seconds and are assigned to the string variable SS$.

The RIGHTS function is similar to LEFTS, except that the digits are counted from the

64

right instead of the left of the string. Of course, the MID$ function could have been

used instead. Using MID$, line 65 would appear as:

B5 SS$ = MID*(TIME* .7 .2)

It is usually easier to use LEFT$ or RIGHTS instead of MID$ if the characters are the

leftmost or rightmost of the string.

Experiment #5 What's the date?

The string function DATES returns the date in the form

mm/dd/yy

For example, if the present date is October 23, 1983, then the command:

PRINT DATE*

will display

10/23/83

Note: The date must be initialized prior to using the DATES function. Once entered,

the date will be automatically updated. If you have not already initialized the date,

you may do so by entering the following command:

DATE$ = "mmlddlyy"

where mm is the number of the current month (e.g. 03 for March), dd is the day, and

yy the year. For example, if today is December 25, 1983, enter

DATE* = "12/25/83"

Delete the previous program from memory with the NEW command. The following

program will print the date in the usual form, (i.e., the name of the month, the day

and the year.) For example:

DECEMBER 25. 1983

Type the following program:

10 MM* = LEFT*(DATE*. 2)

20 MM = UAL(MM*)
30 READ MM*
40 CT = CT + 1

50 IF CT < MM THEN GOTO 30
60 DD* = MID*<DATE*» 4. 2)

70 YY* = RIGHT*(DATE*. 2)

80 PRINT MM*5 " "5 DD* 5 " 19"; YY*
80 DATA JANUARY* FEBRUARY. MARCH. APRIL
100 DATA MAY. JUNE. JULY. AUGUST. SEPTEMBER
110 DATA OCTOBER. NOVEMBER . DECEMBER

Refer to Figure 5-2 for the flowchart of this program.

Execute the program. The output will be today's date in the usual format: month, day,

and year.

65

How Program "What's the date?" Works

.RUN
J

10

SET MM$
TO MONTH

20

CONVERT
MM$TO

NUMERIC MM

30 I
READ MONTH
FROM DATA

LIST

40

70

80

INCREMENT
COUNTER

SET DD$ TO
DAY

SETYY$
TO YEAR

PRINT
DATE

END

CURRENT \NO
MONTH?

Figure 5-2. Flowchart of Program "What's the date?"

66

Line 10 The left two characters of DATES are stored in the string variable MM$. This

is the month. For example, if the month is OCTOBER, then MM$ will have the string

"10" assigned to it. It is important to remember that LEFTS returns a string, not a

numeric constant.

Line 20 The string stored in MM$ is converted to a numeric constant by the VAL
function. This must be done because it will be necessary to compare the month

number to another numeric constant in line 50.

Line 30 The next month is read from the DATA statements and placed in MM$. The

first time, JANUARY is assigned to MM$. Since the string originally stored in MM$
will no longer be needed, the string variable MM$ is reused in this line.

Line 40 This line increments a counter CT. After the first month is read, CT will have

the value 1 because the computer initializes all numeric variables to zero when the

program is executed.

Line 50 If the counter CT is less than the number of the current month, then the

program will jump back to line 30, where the next month is read from the data list.

Eventually, CT will equal MM. When this happens, MM$ will have the current month

assigned to it and line 60 will be executed next. Thus, the months are read repeatedly

into MM$, until the present month is reached, and then the program jumps out of the

loop (lines 30, 40 and 50).

Line 60 The MID$ function is used to extract the day from DATES. The day is given

by the 4th and 5th characters of the string stored in DATES

.

Line 70 The RIGHTS function is used to obtain the current year from DATES. Recall

that the year is given by the last two characters.

Line 80 The date is printed in this line. Note that each item in the print list is

followed by a semicolon which means that no columns are to be skipped. It was

necessary to print a blank space after the month, or otherwise the day would be

printed immediately after the month.

Lines 90 - 110 These DATA statements contain the months of the year which are read

by the READ statement in line 30.

What you have learned:

In this lesson the three special string functions DAYS, TIMES, DATES and some of

their uses have been illustrated. Various other string functions have been used to

extract information from string variables and to print out certain string quantities.

67

EDIT

Lesson #6 Using the Editor
In this lesson you will learn how to use the built-in Editor of the Model 100 so that

changes to a BASIC program can be made quickly and easily.

Until now, you have been able to make changes to your BASIC programs in the

following three ways:

1) An existing line is changed by retyping it.

2) An existing line is deleted by entering just the line number.

3) A new line is added by entering it with the appropriate line number.

While any change to your program can be accomplished using these three procedures,

they can be time consuming. For example, if you only want to change a single

character in a line of your program, the entire line must be retyped. If you want to

move one line to another location in the program, the old line must be deleted and the

line retyped with a new line number.

An easier and more efficient way to make changes of this type is to use the built-in

Editor. The Editor allows changes to be made to a line without retyping the entire

line. It also allows a line number to be changed without retyping the line.

There are other convenient features of the Editor as well. These features will be

examined in detail.

Experiment #1 Inserting a Character

Enter the following program from the keyboard exactly as it is printed here:

10 INPUT "NAME"? N$
20 READ A*, AG
30 IF At < > N$ THEN GOTO 20
40 PRINT "AGE IS" , A
50 DATA DAN* 32, RON* 38, LINDA, 42
G0 DATA BETTY, 35, RALPH, 29, SKIP, 3

This program prompts you for a name. If one of the names in the DATA statements is

entered, (i.e. BETTY), the corresponding age (35) will be displayed. If the name
entered is not found in the DATA statements, an out of data error will result (at least

that is how the program is supposed to work).

69

Run the program. If you enter the name LINDA, the output will look like this:

Obviously, the program is not working correctly. The correct age is 42, not 0. The

problem is in line 40. Variable A at the end of this line should be changed to AG.
Line 40 should appear as

40 PRINT "AGE IS" t AG

This error could be corrected by retyping the line as shown above. But instead, we'll

use the Editor to change the variable name to AG by inserting the single character G
after A. Type the command

EDIT (ENTER)

You will see the following displayed:

The Computer enters the editor mode and the program is displayed. The cursor is on
the first character of the program. The symbol

at the end of each line is used to display the carriage return character that is generated

when (ENTER) is pressed. The * displayed after line 60 is an end-of-file marker.

To insert the "G" after the variable A in line 40, the cursor must be moved so that it

is directly over the -^ in line 40.

The cursor is moved using the four Cursor Movement Keys in the upper right corner

of the keyboard. The arrows indicate which way the cursor will be moved when the

key is pressed.

70

Press the down arrow key three times. This should place the cursor on the 4 in line

40. The display should appear as:

The cursor must now be moved to the right until it is over the last character (the

triangle) in line 40. If the right arrow key is pressed and held down, the cursor will

move to the right until the key is released. Using the right arrow key in this fashion,

move the cursor to the desired position. If you go too far, use the back arrow key to

back up to the correct position.

Once the cursor is correctly positioned, you are ready to insert the letter G. This is

done simply by pressing GO. Do NOT press (ENTER) after GO is pressed. You will

notice that the letter G is displayed in the correct place and the carriage return

character moves one column to the right. At this point, the display should appear as:

When the Editor is used, the system is always in the "insert" mode. This means that

if a keyboard character is typed, this character will be inserted in the line where the

cursor was placed. Characters to the right of the cursor move over to make room for

the inserted character.

You must remember to use the arrow keys to move about on the display, and not the

space bar or (ENTER) .

Now that "G" has been inserted, you must exit from the Editor before you can

execute the program. To exit from the Editor:

PRESS THE ESCAPE KEY (ESC) TWICE or

PRESS ©) once

71

After this is done, you will be back in BASIC with the updated program. List it to

verify that it is:

10 INPUT "NAME"? N$
20 READ A$, AG
30 IF A* < > N* THEN GOTO 20
40 PRINT "AGE IS" , AG
50 DATA DAN, 32, RON, 38, LINDA, 42
60 DATA BETTY, 35, RALPH, 29, SKIP, 3

Note that line 40 contains the correct variable AG. Execute the program. Here is an

example of the output:

Run the program several times entering different names to verify that it is executing

correctly.

Experiment #2 Inserting a Word

Lines 10 and 40 of the previous program will be changed to

10 INPUT "YOUR NAME" 5 N$
40 PRINT "YOUR AGE IS"! AG

The word YOUR must be inserted in both lines as shown above. This will be done

using the Editor.

Type the command

EDIT (ENTER)

to enter the Edit Mode.

72

The following will be displayed:

The cursor is placed over the 1 in line 10. Move the cursor to the right so that the

cursor is directly over the letter N in the word NAME.

Line 10 should appear as

10 INPUT N$4

Type in the word YOUR followed by a space. Line 10 should now appear as:

10 INPUT "YOUR NAME" ! N$

Line 10 is now in the desired form. Next, the cursor must be positioned on the letter

A of the word AGE in line 40. This can be done using the Cursor Movement keys. Be

careful not to press any other keys while you are moving the cursor. When you have

the cursor positioned correctly, line 40 should appear as:

40 PRINT "AGE IS' AG"i

The cursor is positioned correctly for the insertion, so type the word:

YOUR

followed by a space. Line 40 should now appear as:

a<b PRINT "YOUR AGE IS"» AG

At this point editing is finished, so you can exit from the Editor. Press (ESC) twice to

go back to BASIC or simply press (F5) .

List the program to confirm that it is:

10 INPUT "YOUR NAME" 5 N$
20 READ A$, AG
30 IF A$ < > NS THEN GOTO 20
40 PRINT "YOUR AGE IS", AG
50 DATA DAN, 32, RON, 38, LINDA, d2

G0 DATA BETTY, 35, RALPH, 29, SKIP, 3

Note that lines 10 and 40 contain the desired changes.

73

Execute the program. You will have to enter one of the names listed in the Data

statements, or an Out of Data error will occur. Here is an example of the output:

Execute the program several times, entering different names.

Experiment #3 Deleting a Character

In addition to inserting a character, the Editor can be used to delete a character. This

is easily done and will be illustrated in this experiment. The variable AG in lines 20

and 40 of the previous program will be changed to the single letter G.

Type the command

EDIT (ENTER)

to invoke the Editor. The following should be displayed:

The A in the variable AG in line 20 will be deleted first. Position the cursor with the

arrow keys so that it is over the letter G. Line 20 should appear as

20 READ A*, AG

Note that the cursor is positioned to the right of the character to be deleted. Now press

(BKSP) . Line 20 will now appear as

20 READ A*, S

Notice that the letter A has been deleted as desired and that the characters which were

to the right of the deleted letter A have been moved to the left one position. Also note

that the cursor is still positioned over the letter G.

74

Using the arrow keys, position the cursor over the letter G of the variable AG in line

40. When you have done this, line 40 should appear as:

4(2 PRINT "YOUR AGE IS", AG

Press (BKSP) to delete the letter A. Line 40 now should appear as

40 PRINT "YOUR AGE IS", G

At this point, the editing is finished. Press (ESC) twice to exit from the Editor. List the

program to confirm it is:

10 INPUT "YOUR NAME" 5 N$
20 READ A$, G

30 IF A$ < > N$ THEN GDTD 20
40 PRINT "YOUR AGE IS" » G
50 DATA DAN f 32 » RON . 38 » LINDA* 42
B0 DATA BETTY* 35 » RALPH. 29. SKIP. 3

Execute the program to confirm that it is working correctly.

It should be clear that characters can be easily deleted with the use of the Editor. You
need only remember to position the cursor one character to the right of the character to

be deleted.

Another very similar way to delete characters consists of entering the Editor,

positioning the cursor right over the character you wish to delete and then pressing

(ED ((SHIFDfgKsP)).

As with [BKSPJ . characters to the right of the deletion will shift to the left to fill the

vacant space.

Experiment #4 Changing a Character

Here is the previous program again as it currently exists in memory:

10 INPUT "YOUR NAME" 5 N$
20 READ A$ G
30 IF A* < > N$ THEN GOTO 20
40 PRINT "YOUR AGE IS" , G
50 DATA DAN. 32, RON. 38. LINDA, 42
B0 DATA BETTY. 35, RALPH, 29, SKIP, 3

The comma in line 40 will be changed to a semicolon so that the age will be printed

closer to the phrase "YOUR AGE IS." The comma specifies that the age will be

printed in the next field. The use of a semicolon, however, will eliminate all but one

space before the age. The change will be made with the Editor.

Enter the Editor with the command

EDIT CENTER)

75

Again you will see displayed:

Position the cursor so that it is on the space preceding the variable G in line 40. When
this is done, line 40 should appear as

40 PRINT "YOUR AGE IS",':<5<*

Press (BKSP) on the keyboard. This will delete the character just to the left of the

cursor. After this is done line 40 will appear as

40 PRINT "YOUR AGE IS"iG^

Note that the cursor is still on the space which precedes G, thus it is in the correct

position to insert the semicolon. Type a semicolon. Line 40 should now appear as:

40 PRINT "YOUR AGE IS" 5 G

This is the desired form of line 40. You must remember that when (BKSP] is used, the

character deleted will be the one just to the left of the cursor. If the deletion is done

first, then the cursor will be positioned correctly for the insertion of the new character.

The operation can be carried out in the reverse order, but after the insertion, the cursor

must be moved one position to the right before the deletion is done.

Exit from the Editor by pressing the Escape key twice, or just hit (FS).

Execute the program several times to confirm that it is working correctly.

Experiment #5 Changing a Word

List the previous program. You should see:

10 INPUT "YOUR NAME"-; N$
20 READ A* . G

30 IF A$ < > N* THEN GOTO 20
40 PRINT "YOUR AGE IS" 5 G
50 DATA DAN. 32. RON. 38.
G0 DATA BETTY* 35. RALPH.

LINDA. 42
29. SKIP. 3

76

In this experiment, the name RALPH in line 60 will be changed to MORT, with the

use of the Editor. Enter the command

EDIT flNTTR)

to activate the Editor.

Position the cursor in line 60 so that it is on the comma after the name RALPH. Line

60 should appear as:

60 DATA BETTY, 35, RALPH, 29, SKIP, 34

Press (BKSP) five times to delete the name RALPH. After this is done, line 60 will

appear as:

60 DATA BETTY, 35, , 29, SKIP, 3*1

The cursor is correctly positioned for the insertion of the new name. Type in the name
MORT. Line 60 should appear as

60 DATA BETTY, 35, MORT, 29, SKIP, 3-*!

Line 60 is in its desired form; RALPH has been replaced by the name MORT. Exit

from the Editor.

List the program to confirm that it is:

10 INPUT "YOUR NAME" » N$
20 READ A* . G
30 IF A* < > N* THEN GOTO 20
40 PRINT "YDUR AGE IS" i G
50 DATA DAN. 32. RON. 38. LINDA. 42
B0 DATA BETTY. 35. MORT. 29. SKIP. 3

Execute the program. Here is an example of the output:

These experiments have illustrated how the Editor allows a character or characters to

be inserted, deleted or changed in a program without retyping any lines. With a little

practice you will become quite adept at using the Editor to make necessary changes to

your program.

77

Experiment #6 Changing Line Numbers

Delete the previous program from working memory with the NEW command.

The following program allows an arbitrary list of numbers to be entered from the

keyboard. When a zero in entered, the average of the non-zero numbers is computed
and displayed. (At least that is what the program should do.)

Type the program exactly as it is listed:

10 INPUT "NUMBER"; N
20 CT = CT + 1

30 AM = AM + N
40 IF N = THEN GDTO B0
50 GOTO 10
B0 PRINT "AVERAGE IS" 5 AV/CT

The program accumulates the sum of the numbers in the variable AV. The variable

CT is a counter that records the number of values entered. If the number entered is 0,

then the average is printed in line 60.

Here is an example of the execution of the program:

Obviously, the program is not working correctly. The average of the two numbers is

3, not 2. The reason for the inaccuracy is that the number was counted by the

variable CT.

The program can be corrected by interchanging lines 20 and 40. In this way, the

check for a zero value for N is done before the number N is counted. One way of

changing the order of the statements is to retype the two lines. However, an easier

method is to use the Editor to change the line numbers.

Use the command

EDIT (ENTER)

to enter the Edit Mode.

78

The following will be displayed:

The line number 20 must be changed to 40 and the old line number 40 must be

changed to 20. Move the cursor to the in line 20. When this is done, line 20 should

appear as:

CT CT +•

The cursor is positioned correctly to change the 2 to a 4. Delete the 2 by pressing

(BKSP) . Then insert the 4 by pressing CD on the keyboard. Now the program should

appear as:

Next, move the cursor down two lines so that it is over the zero of line 40. The line

should then appear as

41 IF N = THEN "0 6feJ-*i

79

Delete the 4 by pressing (BKSP) . then insert a 2 by typing C2D. The program will

appear as:

Although the lines are not listed in the correct order, they do have the correct line

numbers.

Exit from the Editor.

List the program. You will see:

10 INPUT "NUMBER" 5 N
20 IF N=0 THEN GOTO B0
30 AM = Ay + N
40 CT = CT + 1

50 GOTO 10
60 PRINT "AVERAGE IB" 5 AM/CT

The program is listed in the correct order, because BASIC always lists the lines in

your program according to their line numbers.

Here is an example of the execution of the program:

NUMBER'? 4
NUMBER? .'i::!

NUMBER? a
AVERAGE IS '"*•'

Ok

The program seems to be working correctly. Execute the program several times to

verify that it will work correctly in every case.

You will find that the ability to move a line in your program to a different position by
changing the line number is very useful and convenient.

80

Experiment #7 Changing a Phrase

It is possible to move a word or even a phrase from one place in your program to

another with the Editor. This can be very useful when you want to add a line, or a

portion of a line to another line.

List the last program to confirm that it is:

10 INPUT "NUMBER"! N

20 IF N=0 THEN GOTO 60
30 AM = Ay + N

40 CT = CT + 1

50 GOTO 10
60 PRINT "AVERAGE IB"! AM/CT

The statement in line 40 will be placed in line 20, and line 40 eliminated. The revised

program will be as follows:

10 INPUT "NUMBER"? N

20 IF N=0 THEN GOTO 60 ELSE CT = CT + 1

30 AM = AM + N
50 GOTO 10
60 PRINT "AMERAGE IS"! AM/CT

Enter the EDIT command.

The program will be displayed as:

First the word ELSE will be added to line 20. Position the cursor in line 20 over the

carriage return character. Line 20 should appear as:

20 IF N E THEN GOTO :>CM

The cursor is now positioned for the insertion of the word ELSE. Type a space and

then the word ELSE. Line 20 should appear as

213 IF N THEN GOTO 60 ELSE-*

Next, the statement in line 40 must be inserted after the word ELSE in line 20. This is

accomplished as follows: Position the cursor in line 40 as follows

81

The cursor is placed on the first character (a space) to be moved. Press the SELECT
Function Key ((FT)) on the top row of the keyboard. Move the cursor to the right

by pressing© until it is over the carriage return character at the end of line 40. As
the cursor moves, you will note that the characters are printed in reverse video (light

on dark). This indicates which characters are going to be moved. Line 40 should

appear as

413 CT + l<

Press the CUT Function Key ((H)). When you do this, the characters marked will

disappear from the screen. Line 40 should now appear as;

40 4

The characters to be moved to line 20

CT = CT + 1

which no longer appear on the display have been moved to a temporary storage area in

the computer called the "PASTE buffer." The operation of deleting characters, as

done above, is called a "cut."

The remaining characters in line 40, namely the number 40 and the carriage return,

will now be deleted. Position the cursor so that it is to the right of the carriage return

character.

Press (BKSP) three times. This deletes what was left of line 40. Since (BKSP) was used,

instead of using a "SELECT" and "CUT" operation, these characters are not saved

in the "PASTE buffer.

"

Your program should appear as:

The only remaining operation is to insert the characters saved in the PASTE buffer

into line 20. Position the cursor in line 20 over the carriage return character. When
this is done, line 20 will appear as

2(3 IF N = THEN GOTO 60 ELSE*! • '

*mm0tm*f*imm

82

To insert the characters in the paste buffer, press the PASTE Command key on the

keyboard. When this is done, the characters will be inserted as desired. Line 20 will

now appear as:

20 IF N = THEN GOTO 613 ELSE CT -- CT +

The movement of the characters from one part of the program to another requires a

SELECT, a CUT, and a PASTE.

After the cut operation, the characters remain in the paste buffer and can be inserted in

another part of the program if desired.

Exit from the Editor. List your program to confirm that it is correct:

10 INPUT "NUMBER"? N

20 IF N=0 THEN GOTO 60 ELSE CT = CT + 1

30 AV = AV + N
50 GOTO 10
60 PRINT "AVERAGE IS" 5 AV/CT

Execute the program to confirm that it works as it did before.

Experiment #8
Copying a Phrase (without deleting it)

The previous program will be modified so that the sum of the numbers entered will be

printed before the average value is printed. The revised program will be as follows:

10 INPUT "NUMBER" 5 N

20 IF N=0 THEN GOTO 60 ELSE CT = CT + 1

40 M = AM + N

50 GOTO 10
60 PRINT "SUM IS" 5 AY
70 PRINT "AVERAGE IS" 5 AV/CT

Note that the previous line 60 is now line 70 and a new line 60 has been added. These

changes will be made with the Editor.

Enter the command

EOIT

83

The program will be displayed as usual:

Since the new lines 60 and 70 are very similar, the easiest way to revise the program
is to create a copy of line 60 and then make the necessary revisions.

Put the cursor on the 6 of line 60. Line 60 should appear as:

60 PRINT "AVERAGE IS"; AV/CTN1

Line 60 is to be transfered to the paste buffer. Press the SELECT Function Key ((FT)).

After this is done, move the cursor down one line, so that it is on the end of file

marker. Line 60 will now appear as:

60 PRINT "AVERAGE IS" 5 AV/CT-*

Note that the entire line is in reverse video, indicating that it is ready to be transfered

to the PASTE buffer. This line should not be deleted when it is transfered to the

buffer, so press the COPY Function Key ((ED). Remember that J© transfers and
deletes. Now line 60 appears as

60 P R I NT " AVE RAGE IS"; AV / CT"<§

The cursor is already in the correct place for the insertion, so press the paste key. You
should see:

60 PRINT "AVERAGE IS"; AV/CT--4
60 PRINT "AVERAGE 19"; AV/CT*

The second line number 60 will now be changed to a 70. Position the cursor over the

in the second line number 60.

60 PRINT "AVERAGE IS"; AV/CT
61 PRINT "AVERAGE IS" 5 AV/CT

84

Press (BKSP) and then CD . to change the 6 to a 7. These two lines will now appear as:

60 PRINT "AVERAGE 13"? AV/CT4
7@ PRINT "AVERAGE IS"? AV/CT*!

Line 70 is in the desired form. Move the cursor to line 60 so that it is on the space

after AVERAGE. Line 60 will appear as:

60 PRINT "AVERAGE; AV/CT

Press (BKSP) until the word AVERAGE is erased. Then type in the word SUM. Line

60 will be:

60 PRINT "SUM 18"; AV/C"N

The last step is to delete the characters "/CT" at the end of the line. Move the cursor

to the end of the line so that it is over the carriage return character.

60 PRINT "SUN IS"; AV/CTH

Press [BKSP) three times to erase the characters. Line 60 will be in the desired form

60 PRINT "SUM IS" 5 A:-J4

Exit from the Editor. List the program to confirm that it is:

10 INPUT "NUMBER"! N

20 IF N=0 THEN GOTO 60 ELBE CT = CT + 1

40 AM = Ay + N

50 GOTO 10
60 PRINT "SUM IS" ; AM
70 PRINT "AVERAGE IS" II AV/CT

Execute the program Here is an example of the output:

Recall that if a BASIC program is SAVEd in RAM but changes are made to it when
the program is LOADed in working memory, the program SAVEd in RAM will

reflect those changes.

85

This is true also of the Editor. If the Editor is used to modify a program which was
previously SAVEd in RAM, then these changes also appear in the SAVEd program.

You should practice using the Editor to modify your programs. You will find that it is

a very convenient and quick way of making changes.

What you have learned:

You have learned how to use the Editor to modify your BASIC programs. In most

cases, it is easier and quicker to make changes with the Editor, than to make them by
retyping entire lines.

86

Lesson #7 Sales Trend
In this Lesson, you will learn how to create a program loop with a predetermined

number of repetitions. This is a useful technique when combined with subscripted

variables, which will also be introduced in this lesson.

Experiment #1 Sales Trend

The program below is a "Sales Trend" program. Its purpose is to help predict future

sales based upon the trend of previous sales. The concept underlining this program is

to find a straight line which best fits the historical data and then to project this line

into the future.

Clear working memory with the NEW command and enter the following program:

FOR/NEXT

SltP

DIM

"Subsc ripted'
Variables

Multiple il

Statements

10 CLS
20 INPUT "NUMBER OF PERIOOS"; N
30 FOR X = 1 TO N
40 PRINT "SALES FOR perioo" ;x;

50 INPUT Y

60 SX = SX + X:XX = XX 4 X*X
70 SY = SY + Y:XY = XY 4 X*Y
80 NEXT X

90 D = (N*XY - SX*SY) / (N*XX - SX*SX)
100 A = (SY - B*SX) / N
110 PRINT "FORECAST FOR PERIOO X IS"
120 PRINT A5' • + "

; b i" * X"

Execute this program.

The program begins by asking you to enter the number of periods of historical sales

data. Type 6 and press (ENTER) .

The program then prompts you for the sales data for each of the six time periods.

Enter the following sales data:

SALES
SALES
SALES
SALES
SALES
SALES

FOR
FOR
FOR
FOR
FOR
FOR

PERIOO
PERIOO
PERIOO
PERIOO
PERIOD
PERIOO

1?
2?
3?
4?
5?
6?

103
110
103
120
113
133

The formula for a straight line is:

Y = A + B*X

where Y stands for Sales and X for the time period number. A is called the

"intercept" and B the "slope" of the line. The program uses the sales data which

87

you have just entered to compute the values of A and B. If you entered the data

exactly as shown above, the program will print:

FORECAST FOR PERIOO X IS
36.86666666666 + 5 . 371*12857 1 il2B6*X

You can now use this formula to predict any future period sales by plugging an

appropriate value for X. For example, to predict period 7 sales, enter the following

from the keyboard:

PRINT 36.8667 + 5.37143 * 7

The resulting number, 134.467, represents the trend line forecast of period 7 sales.

You can use the program to calculate the trend line formula for any number of time

periods and any sales data. Try running the program again with your own data. You
can use any convenient time period you wish, such as day, week, month, quarter, or

year.

How the Sales Trend Program Works

Look at the listing of the Sales Trend program and compare it to the flowchart in

Figure 7- 1

.

Line 10 The CLS statement clears the display.

Line 20 The INPUT statement displays the prompt message "NUMBER OF
PERIODS?" and then waits for data to be entered. The question mark is automatically

added by the INPUT statement and should not be inserted within the quotes of the

prompt message. When (ENTER) is pressed, the number which has been typed will be

assigned to the numeric variable N.

Line 30 The FOR statement defines the beginning of a loop which is to be repeated

with successive values for the index variable X. You can think of this statement as

saying:

Perform the following statements with X equal to 1 . Then repeat the same

statements with X equal to 2. Continue repeating these same statements with

successively incremented values of X (1, 2, 3, etc.). Stop repeating this loop of

statements when X becomes equal to the upper limit N.

Since the variable N is INPUT during execution, this program can be used to compute

a trend line for any number of sales periods.

The end of the loop is determined by a matching NEXT statement (see Line 80).

When the NEXT X statement is encountered, the loop is repeated with the next value

of X. If the upper limit N has been reached, execution continues with the statement

following the NEXT statement.

In general, the FOR statement has an index variable, a start value and a stop value.

The index variable must be a numeric variable. The start and stop values may be

constants, variables or expressions. Another example of a FOR statement would be:

30 FOR A = U TO Z/(Y-2)

88

10

Clear-

Display

20
J

f Keyboard ^ Y 'NPUT /

30
1

Loop

X

40

Print

X

50

Keyboard
INPUT

Y

60-70

add X to SX
add X-X to XX
add Y to SY
add X«Y to XY

Yes

N'XY - SX«SY

N'XX - SX*SX

100.

A =
SY - B*SX

N

110-120

Print

A, B

(STOP
J

NUMBER OF
PERIODS?

SALES FOR
PERIOD X?

FORECAST FOR
PERIOD X IS

A + B*X

Figure 7-1 . Sales Trend Program Flowchart

89

In this case, the loop of statements would be executed first with the index variable A
equal to the start value stored in the variable U. The loop would then be repeated with

the index variable A incremented by 1, i.e. A = U + l. The loop would be repeated

with increasing values for the variable A until the upper limit, determined by
computing the value of the expression Z/(Y — 2), is reached.

There would have to be a NEXT A statement located in the program after the FOR
statement to determine the end of the loop. After the last cycle through the loop with

A having the value Z/(Y-2), execution continues with the statement immediately

after the NEXT A statement.

Lines 40 - 50 The PRINT statement prints the prompt message

SALES FOR PERIOD X

where the value of X is determined by the previous FOR statement (Line 30). The
first time through the loop, X has the value 1 , so the prompt message prints as:

SALES FOR PERIOD 1

The second time through the loop, X has the value 2, so the prompt message prints as:

SALES FOR PERIOD 2

Each time through the loop, the prompt message requests the appropriate period

number because the variable X is being incremented in the FOR statement.

Note the use of semicolons in this statement. The first semicolon ensures that the

period number (X) will print immediately after the word "PERIOD." The second

semicolon tells the Computer not to move the cursor after printing the period number.

This means that the question mark (?), automatically printed by the following INPUT
statement, will appear immediately after the period number.

The INPUT statement waits until a number is entered from the keyboard and stores

this number in the variable Y. The variable Y acts as a temporary storage location for

the current period's sales amount.

Lines 60 - 70 These lines actually include two statements each. Line 60, for instance,

includes two assignment statements separated by a colon(:). Line 60 could have been

written in an equivalent manner with two separate line numbers as:

60 SX = SX + X
65 XX = XX + X*X

The two statements were put on the same line strictly as a matter of convenience and

to illustrate that Multiple Statements (two or more statements) can share the same line

number if they are separated with a colon.

The formula for a straight line requires the summation of several quantities:

• the variable SX is used to store the sum of the X values,

• the variable XX is used to store the sum of the squared X values, (i.e. sum of

X*X)
• the variable SY is used to store the sum of the Y values, and

• the variable XY is used to store the sum of X times Y (i.e., the sum of X*Y.)

All variables in a program are initially set to zero by the RUN command. Each time

through the loop, the variable X is incremented to the next period number, and Y is

read in as that period's sales.

90

The first time through the loop, therefore, SX will be replaced with the sum of zero,

the initial value stored in the variable SX, and one (the first period number).

Similarly, XX will be replaced with the sum of zero and one times one. The variable

XX now has the value one. The variable SY is replaced with the sum of zero and the

first period's sales (103 in the example above), and the variable XY is replaced with

the sum of zero and one times the first period's sales (again, 103 in the example).

Table 7-1 below illustrates how the four variables SX, XX, SY and XY sum up the

appropriate quantities on each repetition of the loop:

Loop cycle

1

2

3

4

5

6

Table 7-1. Sales Trend Line Calculations

Line 80 The NEXT X statement determines the end of the loop of statements which
are to be repeated with successive values for the index variable X. So long as the

value of X is less than the upper limit specified in the matching FOR X statement, the

loop will start over again with the next value for X.

When X reaches its upper limit (N in this case), execution transfers to the statement

immediately following the NEXT X statement (line 90 in this case).

There must be a NEXT statement to match every FOR statement in a program; without

a NEXT statement, there would be no way to determine the end of the FOR loop, and
therefore no way to know when to repeat the loop.

Lines 90 - 100 The assignment statements compute the slope, B, and intercept, A,
which define the straight line which best fits the sales data. The use of parentheses

was necessary in the expression to properly compute the ratios:

X Y X*X X*Y SX XX SY XY

1 103 1 103 1 1 103 103

2 110 4 220 3 5 213 323

3 109 9 327 6 14 322 650
4 120 16 480 10 30 442 1130

5 119 25 595 15 55 561 1725

6 133 36 798 21 91 694 2523

B

and

A =

N * XY - SX * SY

N * XX - SX * SX

SY - B * SX

N

Using the sample data entered above, A and B are computed as:

R ^ 6*2523 - 21.694 _ ^^
6 * 91 - 21 * 21

and

91

A = 694 537143 * 21 = 96.8667

Lines 110 - 120 The PRINT statements display the resulting trend line equation:

FORECAST FOR PERIOD X IS

96.86666666666 + 5.3714285714286 * X

Line 110 prints the text contained within the quotes:

"FORECAST FOR PERIOD X IS"

Line 120 then prints the equation for the predicted sales in period X. Note the use of

the semicolons to keep everything printed immediately adjacent to one another. Note
also that the A and B in this statement are not enclosed in quotes, so that the values

stored in the variables A and B are printed. All other items in this statement are

enclosed in quotes and are therefore string constants, which print out exactly as

specified within the quotes.

Since Line 120 is the last statement in the program, execution terminates after the

print.

The FOR / NEXT statement pair introduced in this lesson is very useful when you
need to repeat the same set of procedures a predetermined number of times. Since this

situation comes up regularly in computer programming, you will no doubt want to use
the FOR / NEXT pair quite often in your own programs.

The following experiments will give you a few more ideas for its application and show
you that the FOR statement offers even more flexibility.

Experiment #2 Arrays

This experiment will store the sales data as part of the Sales Trend program, rather

than ask you to input it during execution.

This will make it easier to try several experiments on the data without having to retype

it each time the program is run.

Change the Sales Trend program by entering the following lines:

20 N = 24
25 DIM Y(24)
40
50 READ Y(X)
70 SY = SY + Y(X) : KY = XY + X*Y(X)
200 DATA 1G0, 175 , 140, 230
210 DATA 155. 215, 155, 225
220 DATA 215, 2B5, 220, 325
230 DATA 225

»

270, 2B5, 290
240 DATA 275

»

350, 255, 345
250 DATA 300

»

330 , 315, 380

92

LIST the program; you should now have:

10
20
25
30
50
60
70
80
90
100
110
120
200
210
220
230
240
250

CLS
N = 24
DIM Y(24>
FOR X = 1 TO N

READ Y(X)
SX = SX + X:XX = XX
SY = SY + Y(X) :XY =

NEXT X

B = (N*XY - SX*SY) /

A = (SY - B*SX) / N

PRINT "FORECAST FOR

+ X*X
XY + X*Y(X)

PRINT a;
DATA 1G0
DATA
DATA
DATA
DATA
DATA

155
215
225
275
300

+ "

175
215
2G5
270
350
330

5Bi" *

, 1.40

, 155
t 220
, 2G5
i 255
> 315

(N*XX

PERIOD
X"
230
225
325
290
345
380

SX#SX)

X IS"

Suppose the data in lines 200 through 250 represent quarterly sales figures for six

consecutive years. RUN the program to compute the trend line on the 24 quarters of

data. You will not have to enter any data during execution, since the program reads

the data from the DATA satements. If you have entered the program changes and data

correctly, you will see the trend line equation:

FORECAST FOR PERIOD X IS

148.22463768116 + 8.4086956521739 * X

Of course, the time period assumed here is a quarter, so that the equation will predict

the sales for a specified quarter in the future. For example, to predict the first quarter

of year seven (period 25), enter:

PRINT 148,225 + 8,4087 * 25

(The numbers are rounded off to three or four decimal places.) The result, 358.4425

which is displayed represents the trend line projection of sales to the next period in the

future.

A new type of variable, the subscripted variable, has been introduced in this

experiment. While this experiment could have been performed without the use of a

subscripted variable, including it now will make the next experiment much easier.

The DIM Y(24) statement in line 25 defines the variable Y as a subscripted variable

having a maximum of 24 storage locations allocated to it. These 24 storage locations

can be thought of as 24 separate variables:

Y(l), Y(2), Y(3), Y(24)

The number within the parentheses is called the subscript, and refers to the relative

position of the variable within the block of storage locations set aside by the

corresponding DIM (for "DIMension") statement. The block of storage locations is

called the Y array. Thus, the variable Y(X), used in lines 50 and 70, refers to

position X within the Y array.

93

Line 50 will read the next data item from the DATA statements and store it in position

X of the Y array. Since the FOR statement repeats line 50 with X assuming values

from 1 to 24, the data items will be stored in positions 1 through 24 in the Y array.

Each time through the loop, the assignment statements in line 70 will use the value

stored -in the next location in the Y array to compute the sums SY and XY.

Note that the Y array will contain all 24 data values when the program terminates.

The next experiment will make use of this feature.

Experiment #3 Seasonal Data

Frequently, sales data exhibit seasonal characteristics. For example, the first quarter

might traditionally be slow compared to the rest of the year. If this is the case, it

might be useful to modify the trend line forecast by the amount that the quarter is

typically above or below the trend.

The amount above or below the trend is called the "ratio to trend" and is determined

by comparing the historical (actual) sales for the quarter to the amount which the trend

line would have predicted for that period.

Since there are six years of data, we compute the ratio for each of the first quarters

and take the average (sum the ratios and divide by six). This is called the average

ratio to trend and is the amount that sales in the first quarter differ, on the average,

from the trend line.

Figure 7-3 illustrates the ratio to trend for quarter 1 using the example data introduced

in Experiment 2 above.

Legend

•* Ya Actual Sales

• Yt Computed Trend Sales

+ Seasonally Adjusted Forecast

Past

History

The
Future

5 9 13 17 21 25
YEAR 2 YEAR 3 YEAR 4 YEAR 5 YEAR 6 Number

Figure 7-3. Illustration of Ratio to Trend

94

Table 7-2 below summarizes the average ratio to trend calculations.

Year

n

Period

Ya
Actual Sales

Yt

148.2 + 8.41 *n

Trend Value

Ya/ Yt
Ratio to Trend

1 1 160 156.6 1.02

2 5 155 190.3 0.81

3 9 215 223.9 0.96

4 13 225 257.5 0.87

5 17
'

275 291.2 0.94

6 21 300 324.8 0.92

Sum of the ratios

Average ratio to Trend

5.52

0.92

Table 7-2. How the Average Ratio to Trend is Calculated

To predict sales for the first quarter into the future, you would compute the trend line

forecast and then multiply by the average ratio to trend for the first quarter to adjust

for the season. The program can be easily modified to compute the average ratio to

trend for the first period. Enter the following changes:

140 FOR X =

150 R = Y(X>
1G0 NEXT X

170 PRINT "QUARTER

1 TO N STEP 4

/ (A + B*X) + R

1 RATIO IS" 5 R/G

If you LIST the complete Sales Trend program, you should now have:

10 CLS
20 N = 24
25 DIM Y(
30 FOR X

50 READ Y

60 SX = S

70 SY = S

80 NEXT X
90 B = (N
100 A = (

110 PRINT
120 PRINT
140 FOR X
150 R = Y

1G0 NEXT
170 PRINT
200 DATA
210 DATA
220 DATA
230 DATA
240 DATA
250 DATA

24)
= 1 TO N

(X)
X + XsXX = XX
Y + Y(X) :XY =

+ X*X
XY + X*Y(X)

*XY
SY
"F
a;

(X)
x
"Q

1G0
155
215
225
275
300

- SX*SY) / (N*XX - SX*SX)
- B*SX) / N

ORECAST FOR PERIOD X IS"
" + " 5 B 5 " * X

"

1 TO N STEP 4

/ (A + B*X) + R

UARTER
175

, 215
t 265
> 2Kb
t 350
t 330

1 RATIO IS"? R/G
140
155
220
265
255
315

230
225
325
290
345
380

95

RUN the new program to confirm that the trend line equation and the first quarter

average ratio to trend are printed as:

To predict sales into the future for quarter 1 of year 7, first compute the trend line

forecast for period 25 (you can reduce the above figures to 3 or 4 decimal places):

PRINT 14B.225 + B.40B7 * 25 CENTER]

the result will be 358.4425

Then multiply by the first quarter average ratio to trend to take seasonal fluctuation

into account:

PRINT 0,92 * 35B.443

the answer will be 329.76756

Thus, 329.76756 would represent a prediction of quarter 1 sales in year 7, taking into

account both long term trend and typical first quarter seasonal variation.

This experiment required the program to use every fourth number in the sales array

Y(X). This was easily accomplished with a slight change to the FOR statement in line

140:

140 FOR X = 1 TO N STEP 4

This change in the FOR statement tells the computer to increment the index variable X
in steps of 4 starting with the value 1 until X reaches the upper limit N. Thus, X will

assume the values 1, 5, 9, 13, 17 and 21, which corresponds to the first quarter period

number in years 1, 2, 3, 4, 5 and 6 respectively.

Line 150 computes the ratio to trend for period X and then adds this to the sum of the

previous periods ratios.

Line 160 tests the value of the FOR statement index variable X to see if it has reached

the upper limit N. If it has not, the loop consisting of lines 140 to 160 is repeated. If

the index variable X has reached its upper limit, execution continues with line 170.

Line 170 prints the average ratio to trend for quarter 1 . Note that the numerical

expression R/6 within the PRINT list computes the average ratio by dividing the sum
of the ratios R by the number of ratios 6.

This experiment took into consideration the seasonality of quarter 1. The next

experiment extends this concept to each of the four quarters.

96

Experiment #4 Four Seasons

To compute the average ratio to trend for the second quarter, you could simply change

the start value of X to 2 in line 140:

140 FOR X = 2 TO N STEP 4

A start value of 3 would compute the third quarter ratio and a start value of 4 would
compute the fourth quarter ratio. The message "QUARTER 1 RATIO IS" would still

appear for every quarter since nothing has been done to line 170. Rather than

manually change line 140 for each quarter, however, you could modify the program to

do this for you. Enter the following changes to the program:

IS" iR/B

Run this program to confirm that it now prints the average ratio to trend for all four

quarters:

130 FOR = 1 TO a

135 R =

ld0 FOR X = TO N STEP 4

170 PRINT "QUARTER" ;05" RATIO
190 NEXT

FORECAST FOR PERIOD
148. 22463768 116 +

QUARTER 1 RATIO IS
QUARTER 2 RATIO IS
QUARTER 3 RATIO IS
QUARTER 4 RATIO IS

X IS
8.4086956521739
.9230137061999
1.0761322655641
.86424468709917
1. 1358281261464

* X

Ok

Lines 130 and 196 define a program loop which repeats for each of the four quarters.

Notice that this loop contains within it another loop from line 140 to line 160. This is

an example of a programming concept known as "nested loops." It simply means
that there is a loop of statements within a loop of statements.

The inner FOR / NEXT loop must be completely contained within the outside loop, no

overlap is allowed. In this experiment, the inner loop, lines 140 to 160, compute the

average ratio to trend for a specified quarter Q, and the outer loop, lines 130 to 190,

which repeats for each quarter with the index variable Q = 1, 2, 3 and 4.

Line 135 resets the ratio sum variable R to zero before starting the calculation for

each quarter. This is now necessary to avoid starting with the sum remaining from the

previous quarter.

Line 170 was changed to print the quarter Q along with the average ratio to trend R/6.

97

Experiment #5 Save the Data

The sales data from the previous experiment will be used again in later lessons. To
save yourself the time required to retype the data, you can simply save it as a RAM
file and merge it later.

Delete lines 10 through 190 from the Sales Trend program using the CUT function of

the Editor. Also, change the first digit of each of the remaining line numbers from 2

to 9.

List the remaining part of the program to confirm that it is:

900 DATA 160. 175* 140 . 230
910 DATA 155 . 215 . 155, 225
920 DATA 215 » 2B5 » 220. 325
930 DATA 225 . 270. 2B5 . 290
940 DATA 275 . 350 t 255. 345
950 DATA 300 # 330, 315. 380

Since this data will be merged later, it must be saved as an ASCII file. Therefore,

enter the command:

SAVE "SALES" .A

Go to the Menu by pressing ®) and confirm that file SALES.DO is listed. This file

will be used in the next Lesson.

What you have learned:

You should now be able to use the FOR / NEXT statements in your own programs to

repeat a group of statements. Using the STEP option with the FOR statement will

allow you to control the increment for the index variable in the FOR / NEXT loop.

You also learned that subscripted variables facilitate manipulation of data by storing it

in a block of locations called an array. You can put two or more statements on one

program line using the colon (:) delimiter to save time and perhaps conserve display

space. You saw how the CLS statement was used to clear the display before printing.

These new statements and concepts should prove very useful to you in writing your

own BASIC programs.

98

PRINTS

PSET

Lesson #8 Plot Your Data
In this Lesson you will learn how to create graphs on the Liquid Crystal Display

(LCD).

Experiment #1 Graphics

The purpose of the Plot Your Data program, which will be presented shortly, is to

read a list of quarterly sales figures and display them on the LCD. To do this requires

the ability to display both graphics and text characters.

The LCD display on your Model 100 consists of 240 X 64 individual cells which can

be used to display both graphics and text characters. The following series of simple

keyboard commands will serve to illustrate this.

Clear the screen by entering the following command:

CLS

then turn on the cell in the center of the display with the command:

PSET (120,32)

Turn on the cells in each of the four corners of the display with:

cLSdEUE)
PSET (0,0) : PSET (0,63) (ENTER)

PSET (239,0) : PSET (239,63) UNTIE)

The cells are quite small, so you will have to look carefully to see the illuminated

"dots." You have probably figured out that the first number in the parentheses

determines the horizontal (X) axis position on the display, and the second number
determines the vertical (Y) axis position.

Since the corners are the extreme points of the LCD display, the range of X values is

(left side) to 239 (right side), and the range of Y values is (top) to 63 (bottom).

You should experiment a little with the PSET command by turning on various cells on
the LCD display.

You can erase graphic cells in a similar way. To see this more clearly, clear the LCD
and turn on a few cells in the middle of the display:

CLS (ENTER)

PSET(120,32):PSET(121,33):PSET(119,33)(iBllH)

Now turn off a cell using the PRESET command:

PRESET(1 20,32) (ENTER)

Try turning off the remaining two cells. Experiment with turning cells on and off until

you feel comfortable addressing cells in any position on the display.

99

You can draw lines very easily on your Model 100. For example, to draw a line from
the upper left corner to the lower right corner of the display, enter:

CLS CENTER)

LINE (0,0) - (239,63) (ENTER)

Similarly,

LINE (0,63) - (239,0) (ENTER)

will draw a line from the lower left to the upper right corner. As with the PSET
instruction, the first number in the parentheses is the horizontal (X) axis position and
the second number is the vertical (Y) axis position. The first set of coordinates is the

starting cell and the second set of coordinates is the ending cell.

To erase a line, simply add a zero after the second coordinate:

LINE(0,63) - (239,0),0 (ENTER)

A simple extension of the LINE instruction makes it easy to draw a box:

CLS (ENTER)

LINE (30,8) - (210,56),1,B (ENTER)

Graphic data, such as lines and boxes, can appear on the LCD display at the same
time as text. The number 1 after the second set of coordinates says to draw the line

with dark cells. The letter B at the end of the instruction says to draw a box whose
opposite corners are defined by the two coordinates.

To erase a box, simply change the 1 to a 0:

LINE (30,8) - (210,56),0,B (ENTER)

It is just as easy to draw a filled in box:

CLS CENTER)

LINE (210,27) - (230,37),1,BF CENTER)

To erase a rectangular area on the display, change the 1 to a 0:

LINE (213,30) - (227,34),0,BF CENTER)

100

Experiment #2
Printing Text Anywhere On The LCD
The PRINT @ (PRINT AT) statement allows printing of text in any of 320 positions

on the display. These positions correspond to eight 40 character lines as illustrated in

the table below:

Columns

1 2 3 4 39 40

ine 1 1 2 3 38 39

ine 2 40 41 42 43 78 79

ine 3 80 81 82 83 118 119

Line 8 280 281 282 283 . . 318 319

Table 8-1 . of PRINT @ positions

Clear the display and print the name "RADIO SHACK" in the center of the display

by entering:

CLS (ENTER)

PRINT @ 135, "RADIO SHACK" CENTER)

You should see:

Note that the name "RADIO SHACK" begins printing in the 15th column of line 4.

The PRINT® position would be computed as:

40 * (4 - 1) + 15 = 135.

In general, to print in line L and column C, use PRINT® position

40 * (L - 1) + C

101

You can print text in any order as well as any position using the PRINT® statement,

as illustrated in the following example. Enter the commands:

CLS:FORX= 280TO35STEP-35:PRINT@X,'*';:NEXTX

You should see the asterisks (*) spaced diagonally on the display as shown below:

Notice that the printing started at the bottom and proceeded to the top.

You should experiment with printing text at various locations on the display until you

feel comfortable with the PRINT® numbering scheme.

Experiment #3 Drawing Coordinate Axes

This experiment will show you how to draw standard X-Y type axes which will allow

sales data to be plotted in graph form. Enter the following program:

50 CLS
100 LINE(239,54)
150 LINE -(33.0)

(33*54)

Execute this program. You should see a pair of axes displayed:

Line 50 This statement clears the display.

Line 100 The horizontal axis is drawn from right to left.

Line 150 The vertical axis is drawn from bottom to top. Note that the LINE statement

contains only one coordinate, - (33,0). This illustrates another form of the LINE
statement which assumes that the first coordinate is the same as the last cell referenced

in a LINE, PSET or PRESET statement. In this case, the last cell referenced was

(33,54) and is used as the beginning cell for the vertical line.

102

Experiment #4 Axis Scale

You can add "tick" marks to your axes to indicate a relative scale. Clear the display

and list your program to confirm that it is:

50 CLS
100 LINE(239»54)-<33»54)
150 LINE -(33,0)

Enter the following new lines to your program:

200 FOR X = 33 TO 239 STEP 24
300 PBET <X,53) : NEXT X
500 FOR Y = 51 TO STEP -8
B00 PSET <34»Y) ; NEXT Y

List the entire program to confirm that it is now:

50 CLS
100 LINE (239,54) - (33,54)
150 LINE -(33,0)
200 FOR X = 33 TO 239 STEP 24
300 PSET <X»53> : NEXT X

500 FOR Y = 51 TO STEP -B
B00 PSET (34»Y) : NEXT Y

Execute this program to confirm that it now displays:

Lines 260 - 300 This FOR/NEXT loop displays the tick marks on the horizontal axis.

The first tick mark is displayed at coordinate (33,53), the second at (57,53), and so

on. The last tick mark will be at (225,53).

Lines 500 - 600 This FOR/NEXT loop displays the tick marks on the vertical axis.

The first tick mark is displayed at coordinate (34,51), the second at (34,43), and so

on. The last tick mark will be at (34,3).

103

Experiment #5 Label the Axes

It is usually a good idea to label the scale of your graph. This experiment will show

you how to print both the horizontal and vertical labels. Add the following lines to

your program:

700 FOR X=0 TO 28 STEP 4

710 PRINTS 284+X, Xi : NEXT X

720 FOR Y=l TO 7
730 PRINTS 280-Y*40» 100+Y*50
740 NEXT Y

2000 GOTO 2000

List the program to confirm that it is now:

50 CLB
100 LINE (233,54) - (33,54)
150 LINE -(33,0)
200 FOR X = 33 TO 239 STEP 24
300 PBET (X,53) s NEXT X

500 FOR Y = 51 TO STEP -8

600 PBET (34»Y) : NEXT Y

700 FOR X=0 TO 28 STEP 4

710 PRINT1 284+X > X5 : NEXT X

720 FOR Y=l TO 7
730 PRINTS 280-Y*''\q> , 100 +Y*50
740 NEXT Y

2000 GOTO 2000

Execute the program to confirm that it displays

450

400 -

350 .

300

250

200

150 ,

4 8 12 16 20 24 28

Note: You will have to press (BREAK] to terminate this program.

Lines 50 - 600 The first part of the program remains unchanged and generates the

axes and the tick marks.

Lines 700 - 710 This FOR/NEXT loop prints the labels along the horizontal axis. The
horizontal (X) axis will be used to represent time in quarters for seven years, so the X
variable ranges from to 28. It is incremented in steps of 4 quarters, so that each year

has a label. The first label (0) is printed under the origin at PRINT® position 284,

and each subsequent label is printed four columns to the right.

104

Lines 720 - 740 This FOR/NEXT loop prints the labels along the vertical axis. The

vertical (Y) axis will be used to represent dollar sales ranging from a minimum of 140

to a maximum of 380. For simplicity, labels are started at 150 and incremented in

steps of 50 up to a maximum of 450. The first label (150) is printed in PRINT®
position 240 which is computed as:

280 - 1 * 40.

The second label (200) is printed in PRINT® position 200 which is computed as:

280 - 2 * 40,

and so on.

Line 2000 This statement creates an infinite loop. The purpose of this is to prevent the

"Ok" and cursor from interfering with the display. This would occur if the program

terminated execution.

Experiment #6 Plot Sales Data

The sales data you saved in Lesson 7 will be plotted on the graph created in the

previous experiment. Enter the following new statements to your program:

750 FOR X = 1 TO 24 : READ Y

7B0 PSET (33+X*S, 54- < Y- 13S) /B . 25)
770 NEXT X

If you saved the Data statements under the file name SALES.DO as requested in

Lesson 7, merge it with your program with the command:

MERGE "SALES.DO"

If you did not save file SALES.DO, simply type the data statements so that your

program becomes:

50 CLS
100 LINE (239,54) - (33*54)
150 LINE - (33,0)
200 FOR X = 33 TO 239 STEP 24
300 PSET <X,53) : NEXT X

500 FOR Y = 51 TO STEP -B
B00 PSET (34 >Y) : NEXT Y

700 FOR X = TO 2B STEP 4
710 PRINT0 2B4+X.X; : NEXT X

720 FOR Y = 1 TO 7

730 PRINTi 280-Y*40> 100+Y*50
740 NEXT Y

750 FOR X = 1 TO 24 : READ Y

7G0 PSET (33+X*G, 54- (Y- 1 3G) /B . 25

)

770 NEXT X

900 DATA 1B0, 175, 140* 230
910 DATA 155, 215, 155, 225
920 DATA 215, 2G5 , 220, 325
930 DATA 225, 270, 2B5 , 290
940 DATA 275, 350, 255, 345

105

r j

350 DATA 300 , 330 , 315. 380
2000 GOTO 2000

Run this program.

You should see the following display:

450

400

350

300

•

I

, •
•

•

250

200

•

ft • *

•

150 . . . •
,

4 8 12 16 20 24 28

You will have to press (BREAK) to terminate execution of this program.

This graph depicts sales as a function of time, with the horizontal (X) axis

representing time in quarters of a year and the vertical (Y) axis representing sales

volume.

One advantage of displaying the data in graph form is that the pattern of sales is easier

to discern. In this case, for example, it is apparent that a long term upward trend in

sales exists. This was not so apparent from a tabular listing of the sales data.

Lines 50 - 740 The first part of the program remains unchanged which draws and

labels the axes.

Line 750 This begins a FOR/NEXT loop which reads the sales data from the Data

statements. There are six years of four quarters, so the total number of points will be

24.

Line 760 The PSET statement is used to turn on cells corresponding to each sales

point. The axes of the graph (where X= and Y= 136) is at graphic cell (33,54).

Horizontally, the quarters are spaced six cells apart. The X coordinate of quarter one

is therefore computed as:

33 + 1*6. = 39,

the second quarter as:

33 + 2*6 = 45,

and, in general, quarter X as:

33 + X*6.

The computation of the vertical coordinate is a little more complicated. One reason for

this is that graphic cell vertical coordinates increase from the top to the bottom of the

display, whereas the graph itself assumes that values increase from bottom to top. The
horizontal axis corresponds to a value of 136, which was carefully chosen so that the

labels line up with reasonable values (150, 200, etc.).

106

The expression:

Y - 136

computes the numerical deviation above the horizontal axis. The vertical tick marks

are spaced eight graphic cells apart and represent a sales increase of 50. This means
that each graphic cell is an increase of:

50 / 8 = 6.25

sales units. Thus the expression:

(Y - 136) / 6.25

is the number of graphic cells above the horizontal axis. Finally, the Y cell coordinate

is measured relative to the position of the horizontal axis at vertical coordinate 54, so

the expression:

54 - (Y - 136)/ 6.25

is the vertical cell coordinate. For example, the first quarter sales is Y = 160. The

vertical coordinate is:

54 - (160 - 136) / 6.25 = 54 - 3.84 = 50.16

which rounds to 50. The first quarter sales point is therefore graphic cell

(39,50).

Line 770 This NEXT statement terminates the FOR loop begun in Line 750.

Lines 900 — 950 These Data statements contain the six years of sales values in

chronological order.

Line 2000 This endless loop prevents termination of execution so that the cursor does

not interfere with the graph.

Experiment #7 Connect the Points

The readability of the graph created in the last experiment can be improved by

connecting the data points with straight lines. This is rather easy on the Model 100

using the LINE statement.

Add the new line:

745 PSET (39,50)

and change line 760 (this is easy with the Editor) to

760 LINE -(33 + X*6,54-(Y-136)/6.25)

List the program to confirm that it is:

50 CLB
100 LINE (239. 54) - (33.54)
150 LINE - (33.0)
200 FOR X = 33 TO 239 STEP 24
300 PSET (X.53) : NEXT X

500 FOR Y = 51 TD STEP -8

107

fr

600 PSET (34. Y) : NEXT Y

700 FOR X = TO 28 STEP 4
710 PRINTS 284+X.X! : NEXT X

720 FOR Y = 1 TO 7
730 PRINTS 2B0-Y*40 . 100+Y*50
740 NEXT Y

745 PSET (39.50)
750 FOR X = 1 TO ZG : READ Y

7B0 LINE -(33+X*G. 54-(Y-13G)/E
770 NEXT X

900 DATA 1G0. 175. 140. 230
910 DATA 155. 215. 155. 225
920 DATA 215. 2(35 . 220. 325
930 DATA 225. 270. 2G5. 290
940 DATA 275. 350. 255. 345
950 DATA 300. 330. 315. 380
2000 GOTO 2000

25)

Execute the program and you should see the display

450

400

350

300

250

200

150

A . -•/"V-"-
/

:-,/w
4 8 12 16 20 24 28

You will have to press (BREAK) to terminate execution of this program.

Line 745 The PSET statement turns on the graphic cell for the first quarter sales

point.

Line 766 The LINE statement draws a line from the last cell referenced to the next

sales point. Recall that the first coordinate in the LINE statement is optional, and if

omitted, draws a line from the last referenced cell In this case, the second coordinate

of the LINE statement becomes the first coordinate for the next line. LINE 745 is

required so that the graph starts with the first data point.

Experiment #8 Draw the Trend Line

Recall from Lesson 7 that the trend line for the sales data we have been plotting is

given by the equation

Y = 148.225 + 8.4087 * X

108

This line may be drawn on your graph along with the data to better illustrate the long

term trend of sales. The line may be drawn by specifying the two end points, that is,

computing the Y value for X = and X = 28. The computations are performed as:

YO = 148.225 + 8.4087 * = 148.225
Y1 = 148.225 + 8.4087 * 28 = 383.669

These values must then be converted to graphic cell coordinates as:

(33 + 0*6, 54-(148-136)/6.25) = (33, 52)

(33+ 28*6, 54 - (384 - 1 36)/6.25) = (201 ,14)

Add a new line to your program:

800 LINE (33, 52) - (201, 14)

and execute it to see the new display

450

400 -

350
4\ «-_»*•

^t^#»»**

300 A _.^^V***r

250
T**J*>>A^Vmr^ V

200 -A/\r
150 ****$y V

4 8 12 16 20 24 28

You will have to press (BREAK) to terminate execution of this program.

One of the benefits of graphing the trend line is that it illustrates how next years' sales

might be forecast.

What you have learned:

In this lesson you have learned how to plot graphic data using the PSET, PRESET and

LINE statements. Also you learned how to use the PRINT@ statement, which allows

printing text anywhere on the display. Finally, scaling was used in assigning labels to

the coordinate axes.

109

*

Lesson #9 Functions
In this Lesson you will learn how to use certain functions to reduce the number of

program lines that would be required to carry out frequently encountered tasks.

Experiment #1 Calculating Square Root

This experiment will show you how to compute the square root of a number using the

built-in function capabilities of your Computer.

To obtain the square root of a number, simply type:

PRINT SQR(n) (HUH)

where n can be any positive number. For example to find the square root of 4, type:

PRINT SQR(4) (ENTER)

which will print the correct result:

2

Now print the square root of 2 by entering

PRINT SQR<2)

and observe the correct result

1.414213562373

Finally, try to print the square root of the negative number - 4 by entering

PRINT SQR(-4)

and obtain the error message:

?FC Error

The error message indicates a "Function Call" error which occured because the

Computer cannot find the square root of negative numbers.

The square root function SQR(x) returns a numerical value for a specified numerical

"argument" x enclosed within the parentheses. The argument must be non-negative,

but can be a constant, variable or expression. For example, enter the following

B 4 PRINT SQR(A*A + B*B)

Functions

SOR

FRE

CHR$

4Hkwarn

TAN

ATN

INKEY$

Losi cal
Operators

AND

OR

to compute the length of the diagonal of a rectangle whose sides are of length 3 and 4.

The correct length is printed as

as seen in the illustration below:

111

Experiment #2 Guy Wire Length

In this experiment, you will write a program to calculate the length of each guy wire

required to hold up a TV mast on your roof.

Suppose you are trying to install a TV mast on your roof and would like to precut the

guy wires to the top of the pole so that you can attach them easily when the pole is

stood up vertically. This is illustrated in the drawing below.

H = Vertical

Height

\ L - length of

\ each guy wire

\
\
\
\

D = distance from mast

to guy anchor

Enter the following program:

10 INPUT "HEIGHTt DISTANCE"? H #D

Z0 L = SQR(H*H + D*D)
30 PRINT "GUY WIRE LENGTH IS" 5 L

112

Execute this program and enter a height of 20 and a distance of 15. You should see:

Rerun the program using a height and distance of your own choosing. You might

recall from geometry that this program calculates the hypotenuse of a right triangle

using the Pythagorean Theorem.

Experiment #3 Calculate the height of a tree

A problem similar to the guy wire length calculation is the determination of the height

of a structure, such as a tree. The problem is illustrated below:

H = Height? 4-

Illustration 3

\ A = angle in degrees

D = distance to base

Using Trigonometry, the height may be found if the distance to the base and the angle

to the top are known. The formula is:

H = D tan

where the angle (theta) is measured in radians.

113

Clear memory with the NEW command and enter the following program:

10 INPUT "DISTANCE t DEGREES" 5 D *A

20 PI = 4 * ATN(1)

30 R = A * PI / 1B0
40 H = D * TAN(R)
50 PRINT "HEIGHT IS" 5 H

Execute the program and enter a distance of 50 and an angle of 45 degrees.

The display will appear as:

Execute the program several times with different values for the distance and angle in

degrees.

Line 10 The INPUT statement allows the distance and angle in degrees to be entered

from the keyboard.

Line 20 The value of the constant PI is required to convert the angle in degrees to

radians. While the constant could have been written out in decimal form, this

assignment statement eliminates the need to look it up in a table or to try to remember

it.

It also serves to illustrate another function which is available in BASIC, the

arctangent (ATN). You might like to confirm that this expression calculates the

constant correctly. Type:

PRINT 4*ATN<1) (ENTER)

to display the constant

3. 141592G531332

Line 30 The angle is converted from degrees to radians in this assignment statement.

Line 40 The height is computed using the tangent function. The built-in function TAN
requires the argument to be in radians.

Line 50 The PRINT statement displays the height.

114

Experiment #4 Available Memory

The Model 100 has many other useful functions built into it besides square root,

tangent and arctangent. While some of these are mathematical in nature, others are

more general. For example, the FRE function lets you determine the amount of

available memory and, indirectly, the amount of memory used by your BASIC
program.

To see how much memory you currently have available, type:

PRINT FRE(0) (ESTER)

The number which is displayed, such as

Z32B5

will depend upon several factors, including how much RAM is installed in your

Computer, how many files you have saved, and how large the current BASIC program

is. The argument (within the parentheses) used with the FRE function can be a

numeric constant, variable or expression. The FRE function will always return the

amount of available memory regardless of the value of the argument. To verify this,

type:

PRINT FRE(10) dfiHH)

and you should see the same value displayed as before.

To determine the amount of memory used by a BASIC program, type:

PRINT FRE<0) (HUE)

before you begin typing your program. Then, after having typed it, type:

PRINT FRE(0) (ENTER)

again. This will print the amount of memory left or unused by your program. Finally,

subtract the amount you obtained initially from the amount of memory after the

program was typed. The number obtained is the number of bytes used by the program.

Experiment #5 String Space

The FRE function may also be used to determine the amount of memory available to

store strings. Type:

PRINT FREC") (EflTEH)

and you should see:

256

which indicates that 256 bytes of memory have been allocated for the storage of

strings. The FRE function will return available string space if the argument is any

string constant (such as the null string ""), string variable, or string expression.

Verify this by typing:

PRINT FREC'ABC") (ENTER)

115

You can change the amount of space allocated for strings with the CLEAR statement.

For example, type:

CLEAR 1000 s PRINT FREC") fEHTEff)

and you should see:

1000

which indicates that 1000 bytes have now been allocated for string space. This
allocation, however, reduces the amount of available memory for your program. You
can verify this by typing:

PRINT FRE(0) (EHTEff)

The number displayed should be less than the previous amount available by (1000 -
256) = 744 bytes.

Experiment #6 Printing Quotation Marks
Suppose you would like to display quotation marks. This presents a problem because
the quotation marks are recognized by BASIC as the delimiters of text strings. To see

this, try to display the following phrase, including the quotation marks using the

conventional PRINT statement:

PRINT ""GO WEST YOUNG MAN"" (ENTER)

The unusual result:

is due to the fact that the first pair of quotation marks define a string consisting of a

single space.

The phrase "GO WEST YOUNG MAN" is interpreted as a numeric variable

(initialized to zero). The second pair of quotation marks also print a single space after

the zero. This example should make it apparent that you cannot print quotation marks
in this way. However, it is possible to print them using a special string function.

Type:

PRINT CHR$(34)"G0 WEST YOUNG MAN"CHR$ (34) (SHM)

to display:

"GO WEST YOUNG MAN"

The function CHR$(34) returns the quotation mark character as a string constant. The
argument value 34 is the ASCII character code for the quotation mark. Therefore, to

display a quotation mark, use CHR$(34) in the PRINT statement.

Confirm this by typing:

PRINT CHR*<34) (EETEff)

116

Experiment #7 Displaying ASCII Characters

Type the following program:

10 FOR I = 65 TO 90
20 PRINT CHR*< I)

5

30 NEXT I

and execute the program. You will see the alphabet displayed:

This program defines a loop which displays the CHR$ function with values for the

argument ranging from 65 to 90. The character returned by the CHR$ function for

these arguments is illustrated in the table below:

Argument Character Argument Character

Value Returned Value Returned

65 A 78 N
66 B 79

67 C 80 P

68 D 81 Q
69 E 82 R
70 F 83 S

71 G 84 T
72 H 85 U
73 I 86 V
74 J 87 w
75 K 88 X
76 L 89 Y
77 M 90 z

The number assigned to each letter in the table above is called its ASCII value. The

range of possible ASCII values is to 255 and includes all characters which your

computer can store in its memory.

In addition to the upper case alphabet, there are ASCII values assigned to the lower

case alphabet as well. These can be printed by changing line 10 in your program to:

10 FOR I = 37 TO 122 (EHTlffi

117

Execute the program and it will display the alphabet in lower case:

There are quite a few other characters which can be displayed in a similar manner.
Change line 10 to

10 FOR I = TO 255 (ENTER]

and execute it. You should hear a beep, see the display clear and finally see several

lines of characters displayed. Notice that the upper and lower case letters, the digits

(0-9) and all the punctuation (comma, period, etc.) are displayed along with many
other special characters (copyright symbol, graphics, and other language characters).

Not all of the ASCII values correspond to characters which can be displayed. Some of

them are control codes which perform different functions, such as line feed, carriage

return, sound, clear the screen and so on. For a complete list of ASCII values, refer to

the Appendix in your Model 100 Owner's Manual.

Delete the current program from memory with the NEW command and type the

following program:

10 INPUT "ASCII VALUE" iA

20 PRINT CHR$(A)
30 GOTO 10

Execute the program and enter an ASCII value of 7 when prompted to do so. You
should hear a beep. This is because the program prints CHR$(7), and the ASCII value

of 7 corresponds to the sound function. The program contains a loop back to line 10,

so you will be prompted to enter another ASCII value. Enter a value of 12 and the

display will clear. Enter a value of 132 and the graphics character:

*

for a racing car will display. Enter a value of 172 and the fraction:

1/4

will be displayed. Experiment on your own with other ASCII values. You will have to

press (BREAK) to terminate execution of the program.

118

Experiment #8 Keyboard Control of the Display

This experiment will teach you how to input keyboard characters without pressing

(ENTER) . This is useful when you want the Computer to respond immediately when a

key is depressed.

Clear memory with the NEW command and then enter the following program:

100 CLSs A = 100 : AT = A : PRINT g A* "*"

200 A* = INKEY* : IF At = "" THEN 200
210 IF A* = "D" THEN AT - AT + 1

220 IF A* - "S" THEN AT = AT - 1

300 PRINT B A, " "5 : PRINT B AT t
"*"

5

310 A = AT : GOTO 200

Execute this program.

You will see an asterisk (*) appear in the center of the display (approximately). Press

(ID . The asterisk should move to the right. Press C§D and the asterisk should move to

the left. You should be able to move the asterisk back and forth on the display by
pressing QD to move it to the right and 3D to move it to the left. Press [BREAK) to

terminate execution of the program.

Note that this program has multiple statements on some lines to conserve display

space.

Line 100 The display is cleared and the variables A and AT are initialized to 100. The
PRINT@ statement displays an asterisk in position 100, which is approximately in the

center of the display.

Line 200 The statement

A$ = INKEY$

causes the Computer to look at the keyboard to see if any key is being depressed. If a

key is being depressed when the statement is executed, the INKEY$ function will

return a one character string for that key. For example, if QD is being depressed when
Line 200 is executed, INKEY$ will return the one character string "D" and store it in

the string variable A$. If no key is being depressed when Line 200 is executed,

INKEYS will return a null string (""), and AS will be null ("").

The second statement in Line 200:

IF A* = "" THEN 200

causes a loop which continuously looks at the keyboard to see if a key has been

depressed. If no key is depressed, A$ is null and execution of Line 200 is repeated.

When a key is depressed, A$ will no longer be null and the condition in the IF

statement will be False, causing execution to resume with the next Line, 210.

Line 210 If QD is depressed, the PRINT® position (AT) is increased by one which

will move the asterisk to the right.

Line 220 If (W) is depressed, the PRINT@ position (AT) is decreased by one, which
will move the asterisk to the left.

119

Line 300 The statement

PRINT© A t" "
;

erases the old asterisk by printing a space over it. The second statement

PRINTi AT t "*" 5

prints the asterisk at the new position. The semicolons at the end of these PRINT®
statements are required to prevent scrolling when printing in the bottom row.

Line 310 The variable A stores the "old" asterisk position, and AT stores the "new"
asterisk position. This assignment statement updates the "old" asterisk position.

Execution is returned to Line 200 to allow repeated movement of the asterisk.

Experiment #9 Move in Four Directions

Execute the previous program and hold down (£)• The asterisk should move
continuously to the left. When the asterisk reaches the left margin, it jumps over to

the right and up one line. Continue to hold down (T) until the asterisk reaches the

upper left corner of the display. If you try to move past the upper left corner, the

program will terminate execution with an error message

?FC Error in 300

This "Function Call" error occurs because the PRINT® position goes negative if d}
is pressed with the asterisk in the upper left corner (PRINT@ position 0).

The program can be modified to prevent this error from occurring. At the same time,

it is relatively easy to allow the asterisk to be moved vertically. Enter the following

changes into the program:

230 IF A*="E" THEN AT=AT-40
240 IF A*="X" THEN AT=AT+40
250 IF AT>=0 AND AT<=318 GOTO 300
260 PRINT CHR$<7)5 : AT=A : GOTO 200

List the program to confirm that it is now:

100 CLS : A = 100 : AT = A :

200 A* = INKEY* : IF A$ =

210 IF A* = "D" THEN AT = AT
220 IF A* = "S" THEN AT = AT
230 IF A*="E" THEN AT=AT-40
240 IF A*="X" THEN AT=AT+40
250 IF AT>=0 AND AT>=31B GOTO 300
2B0 PRINT CHR*(7); : AT=A : GOTO 200
300 PRINT @ A, " "5 : PRINT @ AT, "*"5

310 A = AT : GOTO 200

Execute this program.

The asterisk should appear in the center of the display. Press CED and the asterisk

should move up. Press the (TO and the asterisk should move down.

PRINT @
THEN 200
+ 1

- 1

120

As before, QJD should move the asterisk left and QD should move the asterisk right.

Hold down CD until the asterisk reaches the top line of the display. If you attempt to

move the asterisk higher, a "warning beeper" sounds and the asterisk stays on the top

line.

Similarly if you try to move beyond any display boundary, the beep will sound and

the asterisk will stop moving. Try this by moving the asterisk to the four corners with

the appropriate keys.

Line 230 If CED is pressed, the PRINT® position is decreased by 40 to move up one

line.

Line 240 If (D is pressed, the PRINT© position is increased by 40 to move down
one line.

Line 250 If the new PRINT® position (AT) will be valid, that is, between and 318,

the condition

AT> =0ANDAT< = 318

will be true, and execution jumps to Line 300. The condition uses the logical operator

"AND" to combine the two logical expressions

AT> = AND AT< = 318

into a third logical expression. A logical expression is either true or false. For

example, the expression:

AT> =

is True if AT is greater than or equal to zero. It will be False if AT is less than zero.

Similarly, the combined expression

AT> =0ANDAT< = 318

will be True if AT is greater than or equal to zero and also less than or equal to 318.

In general, if LI and L2 are two logical expressions, then the logical expression:

L1 AND L2

is True if both LI and L2 are True, and False otherwise. Logical expressions may also

be combined with the OR logical operator. The expression

L1 OR L2

is True if either LI or L2 is True, and False only if they are both False.

You may have wondered why the upper limit on the PRINT® position was 318

instead of 319, which is the extreme lower right corner of the display. This was done

to prevent scrolling which would occur if the asterisk was printed in the corner.

Even the use of a semicolon after the PRINT® will not prevent the scrolling, which

occurs automatically when a character is printed in position 319. You can verify this

for yourself by changing Line 250 to:

250 IF AT> = AND AT<=319 GOTO 300

and moving the asterisk into the lower right corner.

121

Line 260 This line is executed if the new PRINT® position (AT) is outside the

display limits. The statement:

PRINT CHR$(7) ?

causes a beep to sound. The semicolon is required to prevent scrolling off the display

if the asterisk is on the bottom row.

The statement:

AT = A

sets the new PRINT® position back to the old to keep the asterisk in the same spot

on the display.

Execution is then transferred back to line 200 to continue looking at the keyboard.

What you have learned:

In this lesson you have learned that BASIC has many useful built-in functions in

addition to the mathematical operations. These include the square root, tangent and
arctangent. BASIC also has general purpose functions such as FRE, CHR$ and
INKEYS. These can be used in many other types of applications.

You also learned that BASIC allows the use of logical operators, such as AND and
OR to simplify your programs. They are commonly used in IF statements.

122

Lesson #10 Data Files

In this Lesson you will learn how to read and write data files to cassette and RAM.

IfEN

PRINT*

CLOSE

INPUT*
Data files allow you to store information for future reference. Some common examples
include:

EOF
• A list of customer names and addresses

• A list of items in inventory

• Sales data
N0T

• A list of students and their grades

• A list of hourly data readings such as temperature, pressure, humidity, wind M AXF I LES
velocity, wind direction and pollution index, etc.

You can save data files in either RAM or on cassette. The easiest and most convenient
way to save a data file is in RAM. A RAM data file has the advantage of quick access

and does not require attaching an external device. The disadvantage of a RAM data

file, however, is that it uses up available memory space.

Cassette files are external to the Computer and do not use up valuable RAM space.

When storing a large data file, it is more practical to use cassette tape. For example, a
mailing list of 1000 names and addresses would require around 80K bytes of memory.
This exceeds the maximum memory capacity of your Computer, so a RAM data file is

out of the question. However, a list of this size could fit easily on a cassette file.

Experiment #1 Writing a data file to RAM
The program below allows you to create a RAM file where various names may be
kept.

Clear memory using the NEW command and enter the following program:

100 CLS
110 OPEN "RAM:NAMES" FOR OUTPUT AS 1

120 INPUT "NAME"? N$
130 IF N$ = "" GOTO 200
140 PRINT #1 t N*
150 N* = "

" : GOTO 120
200 STOP

Execute this program and type the name John Smith when prompted, as shown below:

NAME? John Smith

The program will prompt you again to enter another name, and repeatedly do so until

CENTER) is pressed with no name preceding it. Enter the names as shown below:

NAME? Peter Wolf
NAME? Alovsius T, Cornpone
NAME? Jim Shoe
NAME? Steele MaSnet
NAME? Rav D. O'ShacK
NAME?

123

mm

To terminate the program, simply press (ENTER) when prompted for a name.

To confirm that a data file has been created in RAM, press (FT) for a list of files. You
should see the filename:

NAMES. DO

in the list of files.

Since none was specified, the extension ".DO" was automatically added to the

filename and indicating this is a "DOcument" file.

Line 100 This statement clears the display.

Line 110 The data file must be defined in an OPEN statement before data can be

written to it. The statement:

OPEN "RAM:NAMES" FOR OUTPUT AS 1

defines a RAM file with the filename "NAMES.DO" which can be. used for output

with file number 1. Note that the extension to the filename will default to ".DO" if

an extension is not specified.

Line 120 The INPUT statement prompts you to enter a name from the keyboard. It is

stored in the string variable N$.

Line 130 The IF statement checks for a null entry to determine the end of the list.

Line 140 If a file number is added to the PRINT statement, as in

PRINT #1, N$

the items in the print list will be output to the file corresponding to the file number.

The file number must have been previously defined in an OPEN statement. In this

case, file number 1 is a RAM file.

Line 150 The string variable N$ must be reset to a null string "" in order to detect a

null input in line 130. If this were not done, N$ would retain its last input value, and

a null input could not be detected.

The program loops back to Line 120 to allow another name to be input.

Line 200 The CLOSE statement terminates access to the data file and marks the end

of the file.

Since this program will be used again later in this lesson, you should save the program

by entering:

SAME "EXP1"

124

Experiment #2 Reading a RAM File

Now that you have a data file stored in RAM, you can write a program to read and

display it. Clear memory using the NEW command and then enter the following

program from the keyboard:

500 CLS:OPEN"RAM:NAMES" FOR INPUT AS 1

510 INPUT *1 > N$: PRINT N$
520 IF NOT E0F(1) GOTO 510
530 CLOSE

Execute this program.

You should see the display clear and then the list of names saved previously will

appear as:

John Smith
Peter Wolf
Alovsius T. Cornpohe
Jim Shoe
Stee le MaSnet
Rav D. O'ShacK
Ok

Line 500 The CLS statement clears the display. The OPEN statement defines the

RAM file "NAMES.DO" which will be used for input and is referenced with file

number 1. Since no extension is given in the OPEN statement, the .DO extension is

assumed.

Line 510 The INPUT # 1 statement reads the next name in the data file and assigns it

to the variable N$. Note that file number 1 refers to the RAM file "NAMES.DO" as

defined in the preceding OPEN statement.

The PRINT statement displays the name read from the data file.

Line 520 The IF statement tests for the end of the data file. If it is not the end of file

number 1, execution jumps back to line 510 to read another name. If the end of file

number 1 is reached, execution continues with line 530. Two new features of BASIC
are used in this statement.

First, the function EOF(l), returns a value of TRUE if the end of file number 1 has

been reached, or a value of FALSE if the end has not been reached.

Next, the logical operator NOT is used to change the logical value of EOF(l).

IF EOF(l) is TRUE, then NOT EOF(l) will be FALSE.

IF EOF(l) is FALSE, then NOT EOF(l) will be TRUE.

Line 530 The CLOSE statement terminates access to the file.

Since this program will be used later in this lesson, you should save it using the

command:

SAUE""EXP2"

125

Experiment #3 Saving to a Cassette File

While it is quite convenient to save data in RAM, this can use up valuable memory
rather quickly. An alternative is to save the data file to cassette. Since the cassette

recorder uses removable cassette tapes, you have an essentially unlimited storage

capacity for your files. The disadvantage of using cassette data files is that you have

to be sure the recorder is properly attached and the tape is correctly positioned for

both writing and reading.

Attach your cassette recorder to the computer (consult the Owner's Manual if you

have any questions). Insert a blank tape in the recorder and rewind it. Advance the

tape past any leader using the fast forward key.

Load program EXP1 using the command:

LDAD"EXP1" (ENTER)

Change Line 1 10 to:

110 OPEN "CAS:NAMES" FOR OUTPUT AS 1

List the program to confirm that it is:

100 CLS
110 OPEN "CASrNAMES" FOR OUTPUT AS 1

120 INPUT "NAME"; N$
130 IF N$ = "" GOTO 200
140 PRINT »1 t N*
150 N$ = ""

: GOTO 120

This is the same program used in Experiment 1 to write a RAM file, except that the

device in the OPEN statement in LINE 110 has been changed to "CAS:".

Press the RECORD and PLAY keys on the cassette recorder together. Execute the

program and enter the following names when prompted to do so:

NAME? Joan Smith
NAME? Patty Wolf
NAME? Allison T. Cornpone
NAME? Jill Shoe
NAME? Sally Magnet
NAME? Roxanne O'Shack
NAME?

Note that the cassette recorder will run for a few seconds and then stop before you are

able to enter any names. Press (ENTER) without entering any name to terminate

execution. After the last name is entered, the cassette recorder will run for a few

seconds and then stop.

At this point, the data file "NAMES" has been written on the cassette tape. To verify

this, you will have to proceed to the next experiment.

126

Experiment #4 Reading a Cassette File

In this experiment, the cassette data file which you created in Experiment 3 will be

read and displayed. Load program "EXP2" from RAM using the command

L0AD"EXP2" (ENTER)

and change line 50© to

500 CLS:OPEN"CAS:NAMES" FOR INPUT AS 1

List the program to verify that it is

500 CLS : 0PEN"CAS : NAMES" FOR INPUT AS 1

510 INPUT *1 t N$: PRINT N*
520 IF NOT EOF(l) GOTO 510
530 CLOSE

Rewind the tape, press PLAY and execute the program. The cassette recorder will

start and you will hear some sound coming from computer speaker. When the last

name is read from the tape, the recorder and the sound will stop and the names will be

displayed.

Joan Smith
Patty Wolf
Allison T . Co rnpone
Jill Shoe
Sally Magnet
Roxanne O'ShacK
OK

The only change required to change from a RAM file to a cassette file was to change

the device specifier to "CAS:" in the OPEN statement in line 500.

Experiment #5 Transfer Data from RAM
to Cassette

Suppose that you have created a data file in RAM and would like to transfer it to

cassette. You might like to do this to make a backup copy or perhaps to allow you to

kill the RAM file to increase available memory.

The following program will allow you to transfer the file "NAMES.DO" that you
created before, to cassette storage:

Clear memory with the NEW command and enter this program from the keyboard.

100 MAXFILES=2 : CLS
110 OPEN "RAM:NAMES" FOR INPUT AS 1

120 OPEN "CAS:NAMES" FOR OUTPUT AS 2
130 INPUT #1»N$:PRINT *2>N$:PRINT N$
140 IF NOT EOF(1) GOTO 130
150 CLOSE

127

After the program has been entered, insert a blank cassette, rewind it, and advance it

past any leader. Press the PLAY and RECORD keys on the recorder and then execute

the program.

The recorder will run for a few seconds and then stop; when it does, the names stored

in RAM "NAMES.DO" will be displayed as:

John Smith
Peter Wolf
Alovsius T, Cornpone
Jim Shoe
Steele Magnet
Ray D. O'Shack

Finally, the recorder will run for a few more seconds as the program writes the names
to the cassette file. The data file has now been transfered to cassette.

Line 100 The MAXFILES statement limits the maximum file number which may be
used, in this case, two. If you want to open more than one file at a time, you must
first declare the maximum number of files with the MAXFILES statement.

As usual, the CLS statement clears the display.

Line 110 This OPEN statement assigns the file number 1 to the RAM file

NAMES.DO. Since this file will be read, it is declared an INPUT file.

Line 120 This OPEN statement assigns the file number 2 to the cassette file NAMES.
Since this file will be written to cassette, it is declared an OUTPUT file.

Line 130 The statement INPUT #1,N$ reads the name from the RAM file and stores

it in the string variable N$. The PRINT #2,N$ statement writes the name to the

cassette file. The statement PRINT N$ displays the name.

Line 140 If the end of the RAM file has not been reached, the program jumps back to

line 130, where the next name will be read.

Line 150 When the end of file is reached, both open files are closed. A CLOSE
statement closes all open files. If you wish to close a specific file, add the file number
to the CLOSE statement as in

CLOSE 1

You can verify that the file has been transfered properly to cassette by loading in

program "EXP2," rewinding the cassette, pressing the PLAY key and running the

program. If you have done everything correctly, the names will display as soon as the

file has been read in.

Experiment #6 Writing a numerical data file

In this experiment, a data file containing 30 numbers representing sales data will be
created. The table below gives daily sales data for six weeks which will be saved in a

RAM file for later use.

Week Mon Tue Wed Thu Fri
1 280 275 34G 280 250
2 300 2B0 320 300 242

128

3 232 270 350 310 255
a 310 250 310 290 260
5 280 280 290 280 270
G 285 290 330 275 258

Clear memory with the NEW command and enter the following program:

10 OPEN "RAM:SALEDA" FOR OUTPUT AS 1

20 FOR I = 1 TO 30
30 READ S : PRINT »1 , S : NEXT I

40 DATA 280,275,346,280,250
50 DATA 300,260.320.300.242
G0 DATA 292.270,350.310.255
70 DATA 310,250.310,290.260
80 DATA 280,280,290,280,270
90 DATA 285,290,330,275,258

Execute this program.

The only thing which appears to happen is that the BASIC prompt

Ok

displays after a second or two. What took place almost instantly, was that the sales

data contained in the DATA statements was written to a RAM file.

List the files by pressing (M) to confirm that file "SALEDA.DO" has been created.

Line 10 The OPEN statement defines a RAM file with the filename "SALEDA.DO"
and assigns it a file number of 1. Since the file is written to, it is declared an output

file.

Lines 20 - 30 The FOR/NEXT loop repeats 30 times, corresponding to the 30 data

values. Each time through the loop, the next sales value is read from the DATA
statements and then output to file number 1

.

Lines 40 - 90 The DATA statements contain the 30 sales values in chronological

order.

Once the RAM file has been created, it can be used repeatedly with a variety of

analysis and reporting programs. For example, you could use a statistics program to

read the data file and compute the mean and median. In fact, the SALEDA.DO file

will be used in the next lesson in just this way.

What you have learned:

You should now be able to read and write data files to either RAM or cassette. Recall

that RAM files are more convenient but use valuable memory. On the other hand,

cassette files require an external device, but allow essentially unlimited data storage.

You also learned how the logical operator NOT may be used to simplify the condition

in an IF statement.

129

Lesson #11 Average Sales

A r r a v s

TAB

iBBOi

In this lesson you will learn how to compute the average daily sales using the data you """J^g

stored in RAM in the last Lesson under the name SALEDA.DO. * NT

Arrays with two dimensions will be used so that the data can be examined on a daily

or weekly basis. You will learn how to sort an array so that the median can be GO SUB

calculated. Subroutines will be used to avoid repetitive blocks of code in your

programs. The TAB statement will be used to space the output neatly. RETURN

Experiment #1 Display the File

The following program will read 6 weeks of daily sales values from file SALEDA.DO
in RAM and display the values.

Clear working memory and enter the following program:

5 OPEN "RAM:SALEDA,DO" FOR INPUT AS 1

10 FOR W = 1 TO G : FOR D = 1 TO 5
20 INPUT * 1 t S<W»D>
30 NEXT D : NEXT W
40 PRINT "WEEK MON TUE WED THU FRI"
50 FOR W = 1 TO G : PRINT W!
G0 FOR D=l TO 5
70 PRINT TAB(D*5> S(W»D) ;

80 NEXT D ; PRINT
90 NEXT W

Execute this program.

The program will read the file SALEDA.DO containing sales data.

The following table will then be output to the LCD:

END

WEEK MON TUE WED THU FRI
1 280 275 34G 280 250
2 300 260 320 300 242
3 282 270 350 310 255
4 310 250 310 290 2G0
5 280 280 290 280 270
G 285 290 330 275 258

Line 5 The OPEN statement opens the RAM data file "SALEDA.DO" for input and

assigns the file number 1 to it.

Line 1* The first FOR statement,

FOR W = 1 TO 8

sets up an outer loop to index through the six weeks. The second FOR statement

FOR D = 1 TO 5

sets up an inner loop to index through the five days of the week.

131

Line 20 The daily sales are read from the RAM file SALEDA.DO and stored in the

array S. The array S, which will contain the sales values, is a two dimensional array

and can be thought of as a table rather than a list. This array will have six rows and

five columns. The rows correspond to the weeks and the columns the days. This may
be illustrated as follows

day

week MON TUE WED THU FRI
1 S(1,D SO, 2) S(l,3) S(l,4) S(l,5)

2 S(2,l) S(2,2) S(2,3) S(2,4) S(2,5)

3 S(3,l) S(3,2) S(3,3) S(3,4) S(3,5)

4 S(4,l) S(4,2) S(4,3) S(4,4) S(4,5)

5 S(5,l) S(5,2) S(5,3) S(5,4) S(5,5)

6 S(6,l) S(6,2) S(6,3) S(6,4) S(6,5)

The sales data will be read into the array S so that the first row will contain the five

sales values for the first week, the second row the sales values for the second week,

etc.

Line 30 The first NEXT statement defines the end of the inner loop and the second

NEXT statement defines the end of the outer loop.

Line 40 This line prints the "heading" for the output.

Line 50 The first statement in the line begins another FOR / NEXT loop. This loop

will display the daily sales for each week, starting with week 1, then week 2, etc.,

and ending with week 6. The sales were stored in chronological order, so that the first

five values are the sales for the first week, the next five values are for the second

week, and so on.

The second statement

PRINT w;

displays the week number. The first time through the loop, a 1 is displayed, the

second time a 2, and the last time a 6 is displayed. Since a semicolon (;) follows the

variable W in the print statement, the carriage return is suppressed.

Line 60 The FOR statement defines an inner loop which increments through all five

days for each week. This loop will display the five daily sales for each week.

Line 70 The daily sales for each week are displayed on one line. The TAB statement

is used to neatly space the sales values along the line. The general form of the TAB
statement is

TAB(x)

and specifies that printing is to begin in column x + 1 . x may be a numeric constant,

variable or expression. The values of D, the expression

D*5

and the corresponding print positions are given below:

132

value of print position

D*5 is column

5 6

10 11

15 16

20 21

25 26

Day
D
1

2

3

4

5

Examine the output closely by adjusting the Display Control dial until the column

lines become clearly visible. Notice that the first digits of the sales are actually printed

one column to the right of the print position specified by the TAB statement. When a

number is printed, the first position is reserved for a sign. If the number is positive,

then the plus sign (+) is not printed, but the space is still printed. If the number is

negative, then the minus sign (—) is displayed.

Note that the variable S(W,D) is followed by a semicolon. This suppresses the

carriage return so that the next sales amount printed for the week will be in the same

line. Since the carriage return was suppressed in the print statement in line 50, the

week number and daily sales for that week are all displayed on the same line.

Line 80 The NEXT statement defines the end of inner loop which displays the sales

for each day.

The PRINT statement in this line generates a carriage return, which causes the next

week's sales to be displayed on the next line.

Line 90 The NEXT W statement defines the end of the outer loop which causes the

sales for each week to be displayed.

Experiment #2 Compute and Display

the Weekly Average

The previous program will be changed so that the weekly average sales can be

computed and displayed along with the daily sales.

Change line 40 to:

40 PRINT "WEEK MDN TUE WEO THU FRI AUG"

and line 80

80 NEXT D : PRINT WA / 5

Also enter two new lines:

55 WA =

G5 WA = WA + S(W.O)

List the program to confirm that it is:

5 OPEN "RAM:SALEOA.OO" FOR INPUT AS 1

10 FOR W = 1 TO 6 : FOR = 1 TO 5

20 INPUT « 1 . 5(W »0)

30 NEXT s NEXT W
40 PRINT "WEEK MON TUE WEO THU FRI AUG"

133

50 FOR W = 1 TO G : PRINT W

55 WA =

G0 FOR = 1 TO 5 :

B5 WA = WA + S(W»0)
70 PRINT TAB(0 * 5) S<W»0) 5

80 NEXT : PRINT WA / 5

90 NEXT W

Execute the program.

Here is what the output should look like:

WEEK MON TUE WEO THU FRI AVG
1 280 275 348 280 250 288.2
2 300 2B0 320 300 242 284,4
3 292 270 350 310 255 295.4
a 310 250 310 290 260 284
5 280 280 290 280 270 280
6 285 290 330 275 258 287.

G

An additional column containing the weekly averages has been printed.

The average (or mean) was calculated by adding up the five values for the week and

dividing the sum by five. Line 65 calculates the weekly sum and stores it in the

numeric variable WA. The variable WA is initialized to zero outside the loop (lines 60
— 80) where the sum is computed. The weekly sum is divided by five to obtain the

average and displayed in line 80.

Experiment #3 Computing the Average
for Each Weekday

The previous program will be changed so that the average sales for each weekday can

be calculated. There are six sales figures for each day,' so to calculate the average,

these six values must be added and the sum divided by six. This must be done for

each of the five days.

Add the following lines to the program:

95 PRINT "AVG"!
100 FOR 0=1 TO 5 : OA=0 : FOR W=l TO G

110 DA = 0A + S(U»D) : NEXT W
120 PRINT TAB(0*5> INT(OA/6>5
130 NEXT

List the program to confirm it is:

5 OPEN "RAM:SALEOA.OO" FOR INPUT AS 1

10 FOR W = 1 TO G : FOR = 1 TO 5

20 INPUT * 1 t S(W .0)

30 NEXT : NEXT W

40 PRINT"WEEK MON TUE WEO THU FRI AVG"
50 FOR W = 1 TO 6 : PRINT Mi
55 WA =

60 FOR = 1 TO 5

134

G5 WA = WA + S(W»0)
70 PRINT TAB(0*5) S(W»0) 5

80 NEXT s PRINT kA/5
90 NEXT W
95 PRINT "AVG";
100 FOR 0=1 TO 5 : OA=0 : FOR W=l TO B

110 OA = OA + S(W»0) : NEXT 14

120 PRINT TAB(0*5) INT<OA/G)i
130 NEXT

Execute this program. The output should appear as

WEEK MON TUE WEO THU FRI AUG
1 280 275 346 280 250 288,2
2 300 260 320 300 242 284,4
3 232 270 350 310 255 285.4
4 310 250 310 280 280 284
5 280 280 290 280 270 280
B 285 230 330 275 258 287.

B

AUG 231 270 324 283 255

Lines 5-90 The first part of the program remains unchanged.

Line 95 The row label "AVG" is displayed. The semicolon (;) suppresses the

carriage return so the averages will be displayed on the same line.

Line 100 The first FOR statement

FOR 0=1 TO 5

defines an outer loop which increments through each day. The assignment statement

OA =

initializes the daily sum to zero. The second FOR statement

FOR W=l TO 6

defines an inner loop which sums the six week's sales for a given day.

Line 110 The sales for a given day are added and stored in the numeric variable DA.
The NEXT statement defines the end of the inner loop.

Line 120 The daily average is displayed. The TAB function is used to neatly space

the output. The INT function is used to drop any decimal part for neater appearance of

the output. The semicolon (;) suppresses the carriage return so that the next average

will be printed on the same line.

Line 130 The outer loop which increments through each day of the week is

terminated.

By using a two dimensional array S for the sales values, it was very easy to process

the data either weekly (row by row) or daily (column by column). The program could

have been written using a singly dimensioned array and FOR / NEXT loops with the

STEP options. However, it was easier to write the program using the two dimension

array.

135

Experiment #4 Sorting

The thirty sales values in file SALEDA.DO are to be sorted and printed out in

ascending order. Sorting can be easily accomplished if the sales are stored in a one

dimensional array.

The sorting routine which will be used is called a "bubble sort." This is a simple

algorithm that is easy to understand and to program.

The bubble sort works as follows:

Starting at the beginning of the array, the first two values are compared. If the

first is larger than the second, they are interchanged; otherwise nothing is done.

The second and third values are then compared. If the second is larger than the

third, they are interchanged, and so forth through the entire array. When the end

of the array is reached, the largest value will be stored there. The process then

begins over at the beginning of the array. This time, however, it will only be

necessary to go up through the next to the last element. In this fashion, the

largest element goes to the end, the next largest goes to the next to the end

position, etc.

The name ' 'bubble sort' ' is descriptive of this process because of the way the large

values pop up, one at a time, into their correct positions at the end of the array.

The following program will read in the thirty sales values, sort them and display them
in ascending order. Delete the previous program from memory with the NEW
command and enter the following

program:

5 DPEN "RAM:SALEOA.OO" FDR INPUT AS 1

10 DIM 5(30)
20 N = 30
30 FOR I = 1 TO 30
40 INPUT *1 » S(I)
50 NEXT I

500 FOR I = 1 TO N - 1

510 FOR J = 1 TO N - I

520 IF S(J) < S(J + 1) GOTO 540
530 S=B(J) : S(J)=S(J+1) : S(J+1)=S
540 NEXT J : NEXT I

600 PRINT TABQ0) "SORTEO SALES"
610 FOR R = 1 TO 6

G20 FOR C = 1 TO 5

630 I = (R - 1) * 5 + C

640 PRINT TABUC - 1) * 7) S(I)5
650 NEXT C : PRINT
660 NEXT R

Execute the program.

136

There will be a pause while the program sorts the data. Then the output should

appears as follows:

SORTEO VALUES
242 250 250 255 258
2G0 260 270 270 275
275 280 280 280 280
230 285 230 230 230
232 300 300 310 310
310 320 330 34B 350

Reading the table row by row, the values are printed in ascending order, the smallest

value is 242, which is listed first and the largest value is 350 which is listed last.

Line 5 The OPEN statement again allows input from RAM.

Line 10 The one dimensional array S is dimensioned in this line. Remember that there

are thirty sales values.

Line 20 The numeric variable N is given the value 30. It will be convenient to use N
instead of 30 in the program. If the number of sales values read in from the file is

changed, only this line will have to be changed.

Lines 30 - 50 These lines read in the data and store the values sequentially in the

array S.

Line 500 This line starts the "bubble sort" portion of the program. It is necessary to

go through the array 29 times to get all the values in their correct positions. The first

time through the loop (1=1) the largest sales value will be placed in S(30), the

second time through the loop (I = 2), the next largest will be placed in S(29), etc.

The last time through the loop (I = 29) the next to the smallest value will be placed

in S(2). At that point S(l) must contain the smallest value, so the array is sorted.

Line 510 This line starts the FOR / NEXT loop in which the comparisons and possible

interchanges will be made. When I = 1, J will range from 1 to N - 1, when 1 = 2,

J will range from 1 to N — 2, and so on. When I = 29, J will only have the value 1.

Thus as more and more values are stored in their correct positions at the end of the

array S, fewer and fewer comparisons and interchanges need to be made.

Line 520 This line does the comparison. If the values stored in adjacent locations,

S(J) and S(J + 1), are already in order, then execution jumps to the bottom of the

inside loop. However, if they are out of order, then line 530 is executed next.

Line 530 These three statements swap the values stored in S(J) and S(J + 1). Note

that the value stored in S(J) is stored temporarily in the variable S. This is necessary

when swapping two adjacent elements in an array, to prevent erasing one of them. It

is permissible to have an array S and an ordinary numeric variable S as well.

Line 540 The two NEXT statements terminate the FOR / NEXT loops. The NEXT J

statement terminates the inner loop and the NEXT I statement terminates the outer

loop.

Line 600 When the sorting is finished, this line displays a heading for the table.

Line 610 The sorted values are displayed in six rows so that they will all fit on the

display at one time. The FOR / NEXT loop which begins in this line increments once

for each of the six rows.

137

Line 62ft The loop which begins in this line displays the five values in row R of the

table.

Line 630 The value of the subscript I in the S array is computed for the element

displayed in row R and column C. For example, if R = 3 and C = 2, then 1=12.
This is necessary because the data is stored in a one dimensional array but displayed

in a two dimensional table.

Line 640 The value in row R and column C is displayed. The TAB statement is used

to space the output. Note that the semicolon after S(I) suppresses the carriage return.

Line 650 The first statement in this line terminates the inner loop which displayed the

entries in row R. The PRINT statement generates a carriage return, so that the next

five values will be displayed on the next line.

Line 660 The outer loop, which displays each of the six rows, is terminated.

Sorting data is frequently required in computer programming. The bubble sort

technique introduced in this experiment is a straightforward approach to this common
problem, and is well worth learning. Once the sales data has been sorted, it is quite

easy to compute another measure of central tendency — the median.

Experiment #5 Computing the Median

Now that you know how to sort the sales data, you can easily change your program to

compute the median. The median is similar to the average in that they both measure
central tendency. The median is a number such that half of the data values are larger

than the median, and half of the data values are less than the median. If the data

values are sorted, the median is defined as follows

i) if there are an odd number of values, the median is the middle value

ii) if there are an even number of values, the median is the average of the two
middle values.

In the sales data example, there are 30 data values, (an even number) and the two
middle values are the 15th and 16th values. The median is the average of these two
values.

Delete lines 600 through 660 and add the following two lines to the program:

5G0 MD = <S< 15) + S(IB)) / 2

570 PRINT "MEDIAN SALES"! MD

Execute the program. The values will be sorted as before, but not displayed. The
following will be displayed

MEOIAN SALES 280

The median is another type of "average" which in many cases is a better measure of

central tendency than the mean. For example, the median is less affected by extreme

values than the mean. The median is the central value in the sense that there are just

as many values above it as below it.

138

Experiment #6 Computing the Median
of the First N Values

The previous program will be changed so that only the first N values will be read in

from the RAM file, instead of all 30. The median of these N values will then be
computed and displayed.

You will be able to input the value for N when the program is executed. The main
purpose of this experiment is to generalize the median calculation, and show you how
to determine whether there are an even or an odd number of values.

Make the following changes to the program:

20 INPUT "NUMBER OF OAYS (2 - 30) "5 N
30 FOR I = 1 TO N
550 N1 = INT((N+D/2) : N2= I NT((N+2) /2)

560 MO = (S(N1 > + S(N2)) / 2
570 PRINT "MEOIAN IS" 5 MO

List the program to verify that it is:

5 OPEN "RAM:SALEOA.OO" FOR INPUT AS 1

10 OIM S(30)
20 INPUT "NUMBER OF OAYS (2 - 30)"? N
30 FOR I = 1 TO 30
40 INPUT # 1 , S(I)
50 NEXT I

500 FOR I = 1 TO N - 1

510 FOR J = 1 TO N - I

520 IF S(J) < S(J + 1) GOTO 540
530 S=S(J) : S(J)=S(J+1) : S(J+1)=S
540 NEXT J : NEXT I

550 N1 = INT((N+l)/2) : N2= I NT ((N + 2) /2

>

560 MO = <S<N1) + S(N2)) / 2
570 PRINT "MEOIAN IS" 5 MO

Execute the program.

This time you will be prompted for the number of days of sales to be read. After you
enter a value, the program will read the first N values from the RAM file and display

the median

Here is an example of the execution and output of the program:

NUMBER OF OAYS (2 - 30)? 20
MEOIAN IS 285

Thus the median of the first 20 sales is 285.

Execute the program several times. Try entering both even and odd values for N. You
will find that the program will correctly calculate the median in every case.

Line 20 An INPUT statement has been added which prompts you to enter the value

forN.

139

Line 550 The numeric function INT is used in this line. This function drops any

fractional part of a number and thus returns the greatest integer less than or equal to

the argument. Consider the following examples

Argument x Value of INT(x)

1 .234 1

239.899 239
4 4

The values that are computed and assigned to the variables Nl and N2 are the middle

values for the subscripts of the array S(l) through S(N).

For example, if N has the value 16, then

(N + 1)/2 = 8.5

(N + 2) / 2 = 9

and

INT((N + 1)/2) = 8

INT((N + 2) / 2) = 9

so that Nl and N2 will correctly contain the middle subscript values. Additional

examples are given in the table below:

N N1 N2

30 (even) 15 16
20 (even) 10 11

13 (odd) 7 7
27 (odd) 14 14

Note that when N is even, Nl and N2 are the two middle values and when N is odd,

Nl and N2 are both equal to the single middle value. Thus, the use of the INT
function avoids any testing to determine whether N is even or odd.

Line 560 The median is calculated in this line. If N is even, then the average of the

two middle values is computed. If N is odd, then the values stored in Nl and N2 are

the same and so the median is correctly calculated as the middle value.

Line 570 The median is displayed.

Now that you have a program which will sort an array of arbitrary length and compute
the median, you can use it as a subprogram in larger programs. The next experiment

shows you how to do this.

Experiment #7 Calculating the Median
for Each Weekday

In this experiment, the median sales will be calculated for each day of the week. This

means that the program should compute the median value of the six Monday sales, the

median value of the six Tuesday sales, and so on for each day of the week.

To accomplish this, the six values for each day must be sorted before the median can
be computed. The following program illustrates an efficient method of doing this.

140

Modify the program from experiment 6 by changing lines 10 through 50 to:

10 N = B

20 FOR 14=1 TO G : FOR 0=1 TO 5

30 INPUT *1 » R(W »0)

40 NEXT : NEXT 14

50 FOR 0=1 TO 5 : FOR 14=1 TO 6

and enter the new lines 60 through 150

60 S(I4) = R(WfO)
70 NEXT 14

80 GOSUB 500
30 M<0) = MO
100 NEXT
110 PRINT TABU0) "MEOIAN SALES"
120 PRINT " MON TUE WED THU FRI"
130 FOR 0=1 TO 5:PRINTTAB((0-l)*7)M(D)

i

140 NEXT
150 END

and change line 570 to

570 RETURN

List the program to confirm that it is now:

5 OPEN "RAM:SALEOA.OO" FOR INPUT AS 1

10 N = 6

20 FOR 14 = 1 TO 6 : FOR = 1 TO 5

30 INPUT » 1 » R(W »0)

40 NEXT : NEXT 14

50 FOR = 1 TO 5 : FOR W = 1 TO G

G0 S(I4) = R<I4,0)
70 NEXT 14

80 GOSUB 500
90 M(0) = MO
100 NEXT
110 PRINT TABU0) "MEOIAN SALES"
120 PRINT " MON TUE I4E0 THU FRI"
130 FOR 0=1 TO 5:PRINTTAB(< 0-1

)

*7>M<0> i

140 NEXT
150 ENO
500 FOR I = 1 TO N - 1

510 FOR J = 1 TO N - I

520 IF S(J) < S(J+1) GOTO 540
530 S=S(J) : S(J)=S(J+1) : S(J+1)=S
540 NEXT J : NEXT I

550 N1=INT((N+D/2) : N2= INT (< N+2) /2

)

5G0 MO = (S(N1) + S(N2) > / 2

570 RETURN

141

After the program is entered, execute it. The output should appear as:

MEDIAN SALES

MDN TUE WED THL) FRI
2B8.5 272,5 325 285 256.5

The median for each day of the week is printed below the name of the day. For each

day, the six sales values are sorted and the median computed by averaging the two

middle values.

Line 5 The OPEN statement allows the data to be read from a RAM file.

Line 10 The numeric variable N is assigned the value 6, indicating six weeks of data

for each day of the week.

Lines 20 - 40 The data is read from RAM and stored in the two dimensional array R.

Note that a dimension (DIM) statement was not required in this case since no subscript

value will exceed 9.

Line 50 The first FOR statement in this line begins a loop that calculates the median

for each day of the week. Since there are five days, the index variable D runs from 1

to 5.

The second FOR statement in this line begins a loop that transfers the six weeks of

data for day into a single dimension array S.

Line 60 For a given week W and day of the week D, the data value is transferred

from the two dimensional array R into the one dimensional array S. The data for the

first week will be transferred to S(l), the second week to S(2) and so on.

Line 70 The inner loop which transfers the six data values from the two dimensional

array to the one dimensional array is terminated.

Line 80 This line contains a new statement: GOSUB. When this statement is

executed, the program jumps to line 500. Lines 500 through 570 sort and compute the

median of the one dimensional arrays S. The median is stored in the variable MD (line

560). When line 570 is executed, the program jumps back to the statement following

the GOSUB statement. The block of statements in lines 500 through 570 are called a

subroutine. This particular subroutine computes the median of the one dimensional

array

S(1), S(2), ... S(N).

The value of the median is stored in the variable MD. It was necessary, in lines 50 -

70 , to store column D of the two dimensional array R in the one dimensional array S

because the subroutine computes the median of this specific one dimensional array.

Line 90 The value of the median for day D, which was placed in the variable MD in

the subroutine, is stored in the array M(D). This is done because the next median

calculated will be placed in MD, replacing the previous value of MD, before the

program displays the result.

Line 100 This line terminates the FOR / NEXT loop which began in the first FOR
statement in line 50.

Line 110 The heading MEDIAN SALES is displayed. The TAB function is used to

center the heading.

142

Line 120 The names of the five days of the week are displayed in column heading

form.

Lines 130 - 140 The values of the five medians stored in the array M are printed.

M(l) contains the median for Monday, M(2) the median for Tuesday, etc.

Line 150 The END statement terminates execution of the program. Without the END
statement, execution would continue with lines 500 - 570. If that were to happen, the

RETURN statement in line 570 would generate an error message because there was no
corresponding GOSUB statement. The STOP statement could have been used instead

of the END statement.

Lines 500 - 570 This is the subroutine which sorts the array S and computes the

median. Before this subroutine can be used (or "called"), the variable S must have
the appropriate values assigned to it. Upon returning from the subroutine, the median
is stored in the variable MD.

The subroutine can be called as many times as necessary in a program as long as the

input variables (N and S) are initialized before it is called. When the RETURN
statement is executed, control jumps to the statement immediately following the

GOSUB statement.

Here are some rules governing the use of subroutines.

1) Every subroutine must contain a RETURN statement. It may contain more
than one RETURN statement, if there are several places in the subroutine

from which you want to return.

2) A program may contain several subroutines.

3) A subroutine may call another subroutine.

4) A subroutine may be placed anywhere in a program, as long as it is executed

only from a GOSUB call.

Subroutines are very useful in programming. They allow you to avoid repetitive blocks

of code. They also allow you to write your program in modules or blocks so that it is

easier to write and to understand. The program in this experiment was simplified by
putting the sorting and median calculation in a subroutine.

What you have learned:

In this lesson you have seen how arrays, both one and two dimensional, can be used

to store data, so that certain information can be extracted. The TAB statement was
used with the PRINT statement to space the output. Two types of averages were
calculated, the mean and the median. To calculate the median it was necessary to sort

the data. The INT function was useful in simplifying the calculation of the median.

Finally, subroutines can often be used to make your program easier to write and more
readily understandable.

143

Lesson #12 Sound & Simulation
In this lesson you will learn how to create a wide variety of sounds, simulate events

using the built-in random number function, and cause apparent movement (animation) An 1 w a 1
1
o n

on the display.

Experiment #1 Beep your Beeper!

You can use the built-in speaker to create sounds of many types: beeps, sirens,

whistles, clicks, and so on.

Sound can be used in a BASIC program to draw attention to some event — the

occurrence of an error, for example. It might also be used to liven-up a program by
adding noises to indicate movement. You might also want to use your Computer to

create music. All these uses of sound are fairly easy on the Model 100 as you'll find

in the following experiments.

You have already seen that printing CHR$(7) will sound the "bell" character. Try it

now to recall the sound:

PRINT CHR*<7) (EHTJH)

Another way to make the same sound is to use the BEEP statement. Type:

BEEP dSHD
and you will hear the same sound. To verify that the sounds are identical, enter

PRINT CHR*(7) : BEEP

and you will hear two beeps in succession.

You might want to use sound as a sort of warning. Try this:

FOR 1 = 1 TO 10 : BEEP : NEXT I (1RTER)

You can also vary the tone and duration of the sound using another statement as

shown in the next experiment.

Experiment #2 Sound Off!

Create a tone by entering the following command:

SOUND 5586.100

You should have heard a tone lasting approximately two seconds and having a

frequency of 440 hertz. Increase the frequency of the tone by entering:

SOUND 415 ,100

or lower the tone by entering:

SOUND 15800*100

145

As you can see, the first number in the SOUND statement controls the frequency of

the tone and is inversely related to the frequency (the higher the number, the lower the

tone).

Increase the duration of the 440 hertz tone by entering:

SOUND 5586 » 255

and decrease the duration by entering:

SOUND 5586,1

The length of the tone is controlled by the second number in the SOUND statement

and ranges from a minimum of (no sound at all) to a maximum of 255. The duration

of the tone is approximately 20 milliseconds times the number entered. For example,

the command

SOUND 5586*100

turns on a 440 hertz tone for approximately

20 * 100 = 2000 milliseconds = 2 seconds

The first number in the SOUND statement determines the frequency of the tone and

must be an integer in the range of to 16383. You can hear the full range of tones by
entering the following program:

10 FOR I = TO 16383 STEP 100
20 SOUND I ,2

30 NEXT I

Execute the program.

The sounds you hear are tones of approximately 40 milliseconds duration, ranging

from the highest frequency (0) to the lowest frequency (16383) in increments of 100.

The frequency specifier is related to the musical scale, as seen in the table below:

OCTAVE
Note 1 2 3 4 5 6

C 9394 4697 2348 1171 587

C# 8866 4433 2216 1103 554

D 8368 4184 2092 1045 523

D# 15800 7900 3950 1975 987 493

E 14912 7457 3728 1864 932 466

F 14064 7032 3516 1758 873 439
F# 13284 6642 3321 1660 830 415

G 12538 6269 3134 1567 783

G# 11836 5918 2954 1479 739

A 11172 5586 2793 1396 693

A# 10544 5272 2636 1318 659

B 9952 4968 2484 1244 622

146

You can play the middle C scale by entering the following program:

10 FOR I = 1 TO B

20 READ N : SOUND N» 30
30 NEXT I

40 DATA 4697 .4184 .3728.3516
50 DATA 3134.2793.2484.2348

Execute the program to hear the familiar scale. This program reads eight notes from

the data statements and plays them for approximately .6 seconds each. The numbers in

the data statements correspond to C, D, E, F, G, A, B and C respectively and were

taken from the preceding table.

Experiment #3 Play a Melody

Referring to the table above, it is rather easy to write a BASIC program to play

melodies.

Clear memory using the NEW command and enter the following program:

10 READ N.L
20 IF N = THEN END
30 SOUND N. L*20
40 GOTO 10
100 DATA 4697.1 .4697.1 .4697.1 .6269.1
110 DATA 5586.1 .5586.1 .6269.2.3728.1
120 DATA 3728 »1 .4184 .1 .4184 . 1 .4697 .4

130 DATA 0.0

Execute the program and you will hear the familiar Old MacDonald's Farm melody.

Line 10 The note N and the length L are read from the DATA statements. N is the

frequency specifier for the note, and L is the number of beats.

Line 20 A test for the end of the music is made. If the frequency specifier N is zero,

the program ends. Otherwise, the note is played in the next statement.

Line 30 The SOUND statement plays the note for the desired number of beats. The

beat length is approximately

20 * 30 = 600 milliseconds = .6 seconds.

Line 40 Execution jumps back to Line 10 to read the next note.

Lines 100 - 120 Each note is defined by two numbers: N and L. The frequency

specifier N is taken from the table above for the desired musical notes.

147

^^n
£

The number of beats L is determined by the type of note:

quarter note = 1 beat

half note = 2 beats

whole note = 4 beats

You might like to experiment a little by replacing the DATA statements with your

own music. Just remember to terminate the music with a 0,0.

Experiment #4 Animated Character

Adding sound is not the only way to liven up a program. A display which shows
action is often more interesting than a static display. While there are no specific

animation statements, you can easily create movement using the PRINT® statement.

The following program illustrates the technique.

Clear memory using the NEW command and enter:

10 CLS
20 FOR 1=120 TO 158
30 PRINTi I , CHR$<147) i

40 FOR J=l TO (30 : NEXT J
50 NEXT I

Execute this program and watch the stick figure race across the display. While this

program added action, it does not adequately simulate movement. You can erase the

trail behind the runner by printing a space in his previous position and simulate

movement more realistically.

Change line 30 to:

30 PRINTS If ""» CHR$(147)5

and execute the program to see a more realistic simulation of movement. This is

typical of animation on a computer display; you have to erase the last image and

create the new image for each frame in the sequence.

Line 10 As usual, the program begins by clearing the display.

Line 20 A FOR/NEXT loop varies the print position from 120 to 158. This

corresponds to the fourth line, from the left to the right borders.

148

Line 30 Two characters are printed side by side: a space followed by a stick figure.

You may wish to confirm that CHR$(147) is the stick figure by entering

PRINT CHR$<147)

The space is required to erase the stick figure which was printed on the last cycle of

the loop.

Line 4ft A delay loop of a fraction of a second is used to control the speed at which

the figure "runs" across the display. You might experiment a little by changing the

upper limit in the FOR statement to a smaller value, say 30, and then execute the

program. Try the same thing with a larger value, say 200. The upper limit of 60 was

determined by trial and error to give a speed which "looked good."

Line 50 The NEXT I statement determines the end of the FOR / NEXT loop begun in

line 20. Note that this program uses nested FOR/NEXT loops.

Experiment #6 Generating Random Numbers

Computers can be used to simulate random events. This leads to many interesting and

useful applications. For example, you can use simulation to create such seemingly

diverse applications as interactive games and business decision-making models.

What makes simulation possible on a computer is the ability to generate random

numbers. The RND function can be used to return a number between and 1 which

can be thought of as "random" in that the numbers appear to occur with equal

likelihood and unpredictability.

Clear memory using the NEW command and enter

PRINT RND(1)

to obtain the random number

,59521943994623

If you again enter

PRINT RND(l)

you will get another random number ,

. 10658628050158

If you continue to print RND(l), you will generate a stream of random numbers.

Enter the program:

10 PRINT RND(1) : GOTO 10

and execute it.

If you watch the numbers scrolling by on the display, you will notice that they keep

changing and that they are all in the range from zero to one.

149

Press (BREAK] to terminate execution of the program. You can change the range of the

random numbers quite easily. For example, to generate numbers in the range from

zero to 100, simply multiply the RND function by 100. Change the program to

10 PRINT 100*RND(1) : GOTO 10

and execute it. You should see decimal numbers between zero and 100 scroll by. If

you would prefer to have the integers from zero to 100 generated, use the INT
function. Change the program to:

10 PRINT INK 100*RND(1) > : GOTO 10

and execute it. You should see integers between zero and 100 scroll by. Using these

techniques, you can generate random numbers in any desired range. The next

experiment illustrates an application of random numbers.

Experiment #7 Simulating a Coin Toss

This experiment will use random numbers to create a simulation of tossing a coin.

A "head" or "tail" can be generated randomly with the use of RND according to the

following scheme:

RND(1) Outcome

between and .5 Head
between .5 and 1 Tail

Since the probability of generating a number in the range to 0.5 is equal to the

probability of generating a number in the range 0.5 to 1, this scheme will generate

heads and tails with equal probability.

Use the NEW command to clear memory and enter the following program:

10 CLB
20 A = RND(l)
30 IF A < .5 THEN A$="HEAD" ELSE A$="TAIL"
40 PRINT A$."PRESS ENTER"
50 A$=INKEY$: IF A$=""THEN 50
B0 GOTO 20

Execute the program.

If you press (ENTER) , you can generate another coin toss. Continue pressing (ENTER] a

few times to see that the coin tosses give the appearance of a random sequence.

Press (BREAK] to terminate execution.

Line 10 The display is cleared.

Line 20 A random number is generated and stored in the variable A.

Line 30 If the value assigned to A is less than .5, then the string "HEAD" is stored

in the string variable A$. Otherwise, the string "TAIL" is stored in A$.

Line 40 The outcome is displayed along with a reminder to press (ENTER) to continue.

Line 50 This loop continuously scans the keyboard. When any key is pressed, A$ will

no longer be null and execution resumes on line 60.

150

Line 60 Execution jumps back to line 20 to create another coin toss.

Execute and use (BREAK) to terminate the program several times. Notice that the

program generates exactly the same outcome every time. This is a characteristic of

RND(l). Every time a program is run, the same sequence of random numbers will be

generated. While this is convenient when you are debugging your program, it does not

provide the unpredictability characteristic of true randomness. What is required is a

way of starting the sequence of random numbers at an arbitrary point.

Add the following line to the program:

15 A=RND(-yAL(RIGHT$(TIME$»2)))

List the program to verify that it is:

10 CLS
15 A = RND(-VAL(RIGHT$(TIME$.2))

)

20 A = RND<1)
30 IF A<.5 THEN A*="HEAD" ELSE A*= " TA I

L

"

40 PRINT A*. "PRESS ENTER"
50 A$ = INKEY* : IF A$ = "" GOTO 50
60 GOTO 20

Execute the program several times to verify that different sequences of outcomes are

being generated each time.

Remember to use (BREAK) to terminate execution.

The RND function can be used with three types of arguments:

x RND(x)

greater than generates next random number
equal to generates same random number
less than generates a new sequence of

random numbers dependent

upon the value of x

In this program, the time is used to determine the sequence of random numbers by
negating the seconds of the current time. This will provide 60 different sequences of

random numbers. Recall that the time is stored as a string in TIMES and must be

converted to a numeric value using the VAL function.

Experiment #8 Slot machine

This experiment will combine sound, animation and random numbers in one program
to simulate a slot machine.

Enter the following program:

10 A=RND(-VAL(RIGHT$(TIME$.2)) >

20 CLS
30 LINE (95.12) - (138.53).1.B
40 LINE (99.22) - (110.33).1.B
50 LINE -(122.22) .1 ,B

60 LINE -(134 .33) .1 .B

151

70 FOR T = 1 TO 30
80 SOUND 7000 ,1

90 A$=CHR*(145+3*RND(i >)

100 B*=CHR$(145+3*RND(1)

)

110 C$=CHR*(145+3*RND(1)

)

120 PRINTi 137. A$5
130 PRINTi 139. B*i
140 PRINTi 141 .C$5
150 NEXT T
1(30 IF A$ = B$ AND B* = C* GOTO 200
170 PRINTi 240. "Press ENTER"
180 A$=INKEY* : IF A*=""GOTO 180
190 PRINTi 240. " "

: GOTO 20
200 FOR J=l TO 4
210 PRINTi 217. "W I N"

5

220 FOR 1=1800 TO 800 STEP -50
230 SOUND I .2 : NEXT I

240 PRINTi 217. " "

5

250 FOR K=l TO 100 : NEXT K

260 NEXT J : GOTO 170

Execute the program.

A slot machine will appear on the display with three characters appearing at random in

the windows. After a few seconds the characters will stop changing. A win occurs if

all three characters are the same. The beeping sound is used to help simulate motion
in the slot machine. If you don't win, you can press CENTER] to play again. When a

win occurs a siren will sound and "WIN" will flash on the slot machine.

Line 10 The time is used to initialize the sequence of random numbers.

Line 20 This statement clears the display.

Line 30 The outline of the slot machine is drawn as a box using the LINE statement.

Lines 40-60 The three windows are drawn as boxes using the LINE statement.

Line 70 A FOR / NEXT loop is used to control the duration of the spinning of the

slot machine wheels. The upper limit of 30 was determined by trial and error. A larger

value would increase the duration and a smaller value decrease it.

Line 80 A brief tone is generated to suggest rotation of the wheel. Again the

parameters were chosen by trial and error to create a reasonable sound.

Lines 90-110 The characters with ASCII values, 145, 146 and 147 were chosen to be

the display characters because they have contiguous ASCII values and they look

interesting. These three characters are generated at random with the CHR$ function

CHR$(145 + 3 * RND(l))

Since the argument of the CHR$ is truncated to an integer value, this function will

return one of the three characters

A * *

152

The string variables A$, B$ and C$ will contain the characters for the first, second

and third windows respectively.

Lines 120-140 The characters are printed in the windows.

Line 150 The NEXT T statement defines the end of the wheel spinning loop begun in

line 70.

Line 160 If all three characters are the same, execution jumps to line 200, otherwise

execution continues with line 170.

Line 170 The prompt "PRESS ENTER" is displayed in the lower left corner of the

LCD.

Line 180 The keyboard is scanned until a key is pressed.

Line 190 When a key is pressed, the prompt "PRESS ENTER" is erased and

execution transfers to line 20 to repeat the game.

Line 200 A "W I N" message and a siren are repeated four times.

Line 210 The word "WIN" is printed on the bottom of the slot machine.

Lines 220-230 This loop produces the siren sound by increasing the frequency in steps

of 50.

Line 240 The "WIN" message is erased so that it will appear to flash.

Line 250 A FOR / NEXT loop is used to create a short delay.

Line 260 The NEXT J statement defines the end of the "W I N" loop. At the end of

the loop, execution will transfer to line 170 which will print the prompt and wait for a

key to be pressed.

What you have learned:

You have learned that BASIC programs may be enhanced through the addition of

sound, animation and simulation. The SOUND statement allows you to create a tone

with a specific pitch and duration. This can be used to generate many different

sounds. Motion on the display can be created in a variety of ways, including use of

the PRINT® statement. The RND function lets you simulate events by generating a

sequence of random numbers.

153

Lesson #13 Function Keys
In this lesson you will learn to use the Function Keys to interrupt execution of a

program or to return any desired string of characters.

Experiment #1 Programming the Function Keys

The keys on the top row of the Model 100 keyboard, labeled Fl through F8, are

called Function Keys. You have already used some of these in previous lessons. For

example, (ED displays the files saved in RAM, (H) RUNs a BASIC program, and (ED
LISTs a BASIC program.

These functions were built into the Function Keys to facilitate the use of frequently

used operations. However, you can program any Function Key to perform any other

operation or to input a string of characters.

Enter the following command:

KEYLIST

to display the strings programmed into each of the eight function keys. You should see

KEYLIST

,KEY

ON KEY
GDSUB

KEY ON/OFF/
STOP

which indicates that the Function Keys are programmed in the following order:

Key String Key String

(Fl) Files (ED Load
"

(HD Save
"

(F4) Run
(F5) List (ED —
(FD — (ED Menu

Notice that (FD and JZ) are not programmed and contain null strings.

Enter the command:

KEY G» "PRINT TIME*"

and press the function key (ED- You will see:

PRINT TIME*

displayed, with the cursor positioned after the word TIME$. Press (ENTER) to obtain a

155

display of the current time.

You can eliminate the need to press (ENTER) if you also program it as part of the

string. You can use CHR$(13) to do this.

Enter:

KEY Bt "PRINT TIME$"+CHR$ (13

)

and press function (ED to obtain the current time. Notice that it is not necessary to

press (ENTER) this time since it is programmed as part of the string.

You might wish to program Function Key (FT) with the EDIT command, since it is so

frequently used in BASIC programming.

Enter:

KEY 1 , "EDIT" + CHR$(13)

and press function key (FZ) whenever you wish to enter the Edit mode. If there is no
program currently in working memory, this command will have no effect.

Use the KEYLIST command to confirm that you have programmed (F© and (FZ). If

you enter:

KEYLIST

you should see

You can change any of the Function Keys, including the factory programmed keys.

For example, enter:

KEY 3, "PRINT DATE*" + CHR$<13)

and press Function Key (F3) to obtain a display of the current date. Use the KEYLIST
command to verify that (F3) contains the string

PRINT DATE*

To program (ED back to the original string

Save "

you will have to use the CHR$(34) form of the quotation marks when you enter the

string:

KEY 3, "Saue " + CHRt<34>

156

Use the KEYLIST command to confirm that you have restored (ED to its original

form. You can restore (F6) and (F7) to their original null string if you wish by entering

KEY B, ""

KEY 7, ""

You can reprogram any function key with any string up to 15 characters. Just

remember to use CHR$(13) for (ENTER) and CHR$(34) for the quotation mark.

Experiment #2 Interrupting Execution

You can also use the function keys to control execution of a program. The ON KEY
GOSUB statement lets you immediately interrupt a program by pressing a function

key. Depending upon the Function Key that is pressed, the program will jump to one

of several subroutines.

This interrupt capability allows direct keyboard control of a program during execution.

The action is similar to pressing (BREAK) , except that execution is not terminated, only

redirected.

The program below illustrates how Function Key interrupts work. Clear memory with

the NEW command and enter the following program:

10 KEY ON
20 ON KEY GOSUB 100 »200 t300
30 PRINT I : 1=1+1 : GOTO 30
100 PRINT "SUBROUTINE 1" : RETURN
200 PRINT "SUBROUTINE 2" : RETURN
300 PRINT "SUBROUTINE 3" : RETURN

Execute this program and watch the display.

You should see a series of numbers, starting from zero and increasing by one,

scrolling on the display.

Press (ED. You should see the message:

SUBROUTINE 1

displayed and then the numbers will continue scrolling. Press (ED to display the

message:

SUBROUTINE 2

or press (ED to display the message:

SUBROUTINE 3

You can interrupt the printing of numbers at any time using any of the first three

Function Keys. Execution jumps to the appropriate subroutine depending upon which
Function Key is pressed.

Use (BREAK) to terminate execution of the program.

Line 10 The KEY ON statement enables the Function Key interrupt capability. In

effect, it tells the computer to keep looking for a function key to be pressed. This

statement is used in conjunction with the ON KEY GOSUB.

157

Line 20 If a function key is pressed, execution will be directed according to the

subroutine line numbers in the ON KEY GOSUB statement. For example, if Function

Key (H) is pressed, execution goes to the subroutine in line number 100. If the

second Function Key, ®), is pressed, execution goes to the subroutine in line number

200. If the third Function Key, (ED, is pressed, execution goes to the subroutine in

line number 300.

If any other function key is pressed, nothing happens, since there are no more line

numbers in the ON KEY GOSUB statement.

The general form of the statement is:

ON KEY GOSUB <Ust of line numbers>

where the list of line numbers corresponds to subroutines. The first line number in the

list corresponds to Function Key (ED, the second line number, if present, corresponds

to Function Key (ED, and so on.

The ON KEY GOSUB statement must be placed in the program so that it will be

executed before the Function Key is pressed. Otherwise, the Function Keys will be

ignored during program execution.

Line 30 A continuous loop prints the integers starting at zero and incrementing in

steps of one. These statements keep right on printing, so long as a Function Key is not

pressed.

Line 100 This two statement interrupt subroutine is executed if the Function Key H)
is pressed. The statement which is being executed when the Function Key is pressed is

allowed to finish before execution is transferred to the subroutine. This subroutine

simply prints the message

SUBROUTINE 1

and returns execution to the statement after the one which was interrupted. For

example, if the interrupt occurs while the statement

PRINT I

is being executed, then execution returns to the next statement

1 = 1+1.

Line 200 This interrupt subroutine is executed if Function Key (EB is pressed.

Line 300 This interrupt subroutine is executed if Function Key (ED is pressed.

Experiment #3 Interrupting an Interrupt

It is possible to interrupt an interrupt subroutine by pressing a Function Key while the

interrupt subroutine is executing. You can modify the current program to illustrate

this.

Change line 200 to:

200 FOR J = 1 TO 20

158

and enter the new lines:

210 PRINT "SUBROUTINE 2"

220 NEXT J : RETURN

List the program to confirm that it is:

10 KEY ON
20 ON KEY GOSUB 100,200,300
30 PRINT I : 1 = 1 + 1 : GOTO 30
100 PRINT "SUBROUTINE 1" : RETURN
200 FOR J = 1 TO 20
210 PRINT "SUBROUTINE 2"

220 NEXT J : RETURN
300 PRINT "SUBROUTINE 3" : RETURN

Execute this program and press (F2) to interrupt execution and begin execution of the

interrupt subroutine at line 200.

You should see the message:

SUBROUTINE 2

repeat 20 times.

When the subroutine is finished printing 20 times, execution returns to the main

program. You will see the numbers printing again when this happens.

Again press (S) to interrupt execution of the main program. This time however, press

the Fl function key before the 20

SUBROUTINE 2

messages finish printing. You then should see the message:

SUBROUTINE 1

displayed once and the SUBROUTINE 2 message continue until all 20 repetitions are

complete. Finally, execution returns to the main program where the numbers continue

to be displayed.

Sometimes it is desirable to be able to interrupt an interrupt subroutine and sometimes

it is not desirable. The KEY OFF statement can be used to prevent the interruption of

an interrupt subroutine.

Change the following lines in your program:

200 KEY OFF:FOR J = 1 TO 20
220 NEXT J : KEY ON : RETURN

List the program to confirm that it is:

10 KEY ON
20 ON KEY GOSUB 100 f 200. 300
30 PRINT I : 1=1+1 : GOTO 30
100 PRINT "SUBROUTINE 1":RETURN
200 KEY OFF:FOR J = 1 TD 20
210 PRINT "SUBROUTINE 2"

220 NEXT J : KEY ON : RETURN
300 PRINT "SUBROUTINE 3":RETURN

159

Execute the program.

Press the (ED to interrupt the main program. Again you will see the message:

SUBROUTINE 2

displayed repeatedly on the LCD. While this interrupt subroutine is executing, press

(ED. This time you cannot interrupt the interrupt subroutine. However, after the

subroutine is finished, the main program can be interrupted with any of the Function

Keys (ED, (ED or (ED.

The reason for this is that the KEY OFF statement in line 200 disabled the Function

Key interrupts. The KEY ON, in line 220, restored the Function Key interrupts at the

completion of the subroutine.

Rather than totally ignore an interrupt which occurs during an interrupt subroutine,

you may wish to have it execute at the completion of the current interrupt subroutine.

This can be accomplished with the KEY STOP statement.

Change line 200 to:

200 KEY STOP : FOR J = i TO 20

Execute the program.

Press (ED to interrupt the main program. Then press (EI to interrupt the interrupt

subroutine. Notice that nothing appears to happen. However, if you watch the display

carefully, you will see the message:

SUBROUTINE 1

display after the last SUBROUTINE 2 message is displayed.

This is because the KEY STOP statement in line 200 delays execution of the (FT)

interrupt until the current interrupt subroutine is finished.

Experiment #4: Checkwriter with Interrupts

In this experiment you will simulate a payroll program which allows interruption from
the keyboard. This could be used to gain access to a data file while the Computer is

engaged in a time consuming process. For example, if a payroll program was printing

a long list of paychecks, it would tie up the Computer until the printing was
completed.

Ordinarily, if you wanted to gain access to the employee data file, you would have to

wait until the printing finished or else break the program and then resume printing

later. You could use Function Key interrupts, however, to allow immediate inquiry

into the file without breaking the program. The printing would simply continue after

the inquiry was completed.

Clear memory with the NEW command and then enter the following program:

10 CLS : KEY ON : ER*=STR ING$ (30 , " ")

20 ON KEY GOSUB 140
30 FDR 1=1 TO G:READ N* (I) »R (I) »H (I) : NEXTI
40 FDR 1=1 TD G

50 LINE <lZf0>-<22Gt47> tl tBF

160

60 PRINT @4, "RADIO SHACK";
70 PRINT @28, DATE*;
80 LINE <24,15)-<210,3i> ,0,BF
90 PRINT @84 f "PAY TO: "; N*(I)5
100 PRINT @124 , R(I) * H(I) i

110 PRINT@148»"D0LLARS" 5

120 FOR K=l TO 1000 : NEXT K

130 NEXT I : END
140 PRINT @240 » ER*i
150 PRINT @2B0, ER*»
160 PRINT 0240 » "NAME" ;

170 INPUT N$
180 FOR J=l TO BiIF N*ON*(J) GOTO 210
190 PRINT0280 »"RATE"R(J>" HOURS"H(J)5
200 RETURN
210 NEXT J : RETURN
300 DATA SUE 9MITH ,7 . 5 .40 ,T IM LEE .6 ,35

310 DATA RON REED ,8 ,40 , ANN JONES, 6. 5, 38
320 DATA JAN ELY, 7, 40, SAM BAKER , 15 . 5 ,38

Check the program carefully against the listing and then execute it.

You will sec a "check" drawn on the display similar to the one illustrated below:

RADIO SHACK 10/10/83

PAY TO: SUE SMITH
300 DOLLARS

If you let the program run for a few minutes, you will see checks display in

succession for each of the employees listed in the data statements. As you can see, it

takes quite a bit of time to display each check. This was intended to simulate the time

it would take to print a check using a printer instead of the LCD display.

Execute the program again. This time however, press (ED before the second check is

displayed. You should see:

RADIO SHACK 10/10/83

PAY TO: SUE SMITH
300 DOLLARS

NAME?

Notice the NAME? prompt just below the check. If you enter the name SAM
BAKER, you should see his pay rate and hours worked this week appear on the

bottom line of the display as:

RATE 15.5 HOURS 38

As soon as the rate and hours appear, the checks continue printing. You can interrupt

the check printing at any time to find out the pay rate and hours worked of any

employee listed in the data statements.

161

Try interrupting the program and entering several other names. If you should enter a

name which is not in the data statements, it will be ignored and printing will continue

uninterrupted.

Line 10 The display is cleared and the Function Key interrupts are turned on. A string

of 30 spaces is stored in the string variable ER$. This will be used to clear a portion

of the display.

Line 20 Function Key (ED will cause a jump to an interrupt subroutine beginning in

line 140. The remaining seven Function Keys remain undefined and will therefore

have no effect if they are pressed.

Line 30 The six names in the data statements are read into the string array N$(I), the

rates arc read into the numeric array R(I), and the hours are read into the numeric

array H(I). No dimension statement was required in this example since the subscript

does not exceed 10.

Line 40 The FOR/NEXT loop which begins in this line controls the printing of the six

checks.

Line 50 A box is drawn to look something like the outline of a check. The
coordinates (12,0) and (226,47) refer to the upper left and lower right hand corners

respectively. The ,1,BF specifies a box filled with dark cells.

Line 60 The company name RADIO SHACK is printed in the upper left corner of the

check.

Line 70 The date is printed in the upper right corner of the check.

Line 80 An empty box is drawn in the center of the check to make room for the name
and amount of the check.

Line 90 The employee name is printed on the check after the message "PAY TO: ".

Line 100 The salary is computed as the pay rate R(I) times the hours worked H(I) and

printed on the check below the name.

Line 110 The word "DOLLARS" is printed on the same line as the salary amount.

Line 120 A delay loop is added to allow time to inspect the check before the next one

is printed.

Line 130 The NEXT I statement is the end of the check printing loop. The program

will END after all six checks have been printed.

Line 140 This is the first line of the interrupt subroutine. Execution will jump here if

(FT) is pressed while the main program is executing. The statement in the main

program which was interrupted will finish before the interrupt subroutine begins. This

statement will erase the first 30 spaces of the next to last line on the display. The
purpose of this is to erase any name which may be left here from a previous interrupt.

Line 150 This statement erases the first 30 spaces of the last line for the same reason

given above.

Line 160 The prompt "NAME" is printed on the next to last line.

Line 170 This statement allows a name to be entered and assigns it to the string

variable N$.

162

Line 180 This FOR / NEXT loop compares the name stored in N$ to the name stored

in the array N$(I). If the names are different, execution jumps to line 210. Otherwise,

line 200 will be executed next. It was necessary to use an index variable other than I

in this loop, because I is being used as the index variable in the main program and

must not be altered in the interrupt subroutine.

Line 190 The requested employee's rate and hours are displayed below the name.

Line 200 This RETURN statement terminates execution of the interrupt subroutine

after a rate and hours is displayed. Execution resumes in the main program with the

statement following the one which was interrupted.

Line 210 The NEXT statements define the end of the FOR loop which checks for the

name in the DATA statements. If no match is found, this RETURN statement

terminates execution of the interrupt subroutine.

Lines 300-310 These DATA statements contain the six names with their respective

pay rate and hours worked.

This simple program suggests how interrupts can be used in a more elaborate payroll

program. Typically, a practical payroll program will use a personnel file containing

hundreds or perhaps thousands of characters of information for each employee.

Conceivably, you could use different Function Keys to inquire about different types of

information, for example address, telephone number, number of deductions, length of

employment, and so on.

Of course the use of Function Key interrupts is not limited to payroll programs. You
may very well find applications in other types of programs including scientific,

mathematical, educational and other areas of business.

What you have learned:

You have learned how to program the Function Keys so that a string will be entered

with a single keystroke. You have also seen that the Function Keys may be used to

control execution of a program through the use of interrupt subroutines.

163

Lesson #14 Using the COM Option

OPEN "COM:"

•qji

SAVE "COM: ,,,?

LOAD "CDM:"

Your Model 100 has an RS-232C Interface which can be used for serial

communications. In this lesson you will learn how to use the serial port (located in the
p n q 1 1 r

rear panel of the Computer and labeled RS-232C) to communicate with other devices "iauu

such as another computer or a serial printer.

Also, many laboratory instruments send results through a serial port making direct data •"
.

acquisition possible. If the instrument allows two way communication, you might even i|*

be able to control the device or the process from the keyboard of the Model 100. r

Furthermore, many peripheral devices use serial communications. For example,
iNrU l

printers, plotters, voice recognition and synthesis devices, cash registers, modems and 'WSHSt
EPROM programmers often have an RS-232C Interface for serial communications TELCOM /iTy—
with a computer. This opens a wide range of possible uses for your Model 100. dMBl

To access the serial port, you will need a standard DB25 type connector. Radio Shack

offers RS-232C cables in a variety of lengths (such as the five foot cable, catalog

number 26-4403). Also, whenever connecting the Model 100 to another TRS-80
Computer, it is necessary to use a Null Modem Adapter (26-1496).

Some Terminology...

To use the serial port (the RS-232C Interface) you don't have to be an expert in serial

communications. However, some familiarity with the terminology and concepts would

help tremendously. The following discussion highlights some important concepts about

serial communications.

Serial communications between a computer and an external device is done one

character at a time. A character can be uniquely represented as a series of data

"bits," which can be thought of as a list of ones and zeros.

One way of obtaining this bit representation is to express the "ASCII" value of the

character in binary form. (ASCII refers to American Standard Code for Information

Interchange.) For example, the ASCII value of the uppercase letter "A" is 65 decimal

or 01000001 binary. Typically, the number of bits used to represent the ASCII value

is 6, 7 or 8.

Since a bit has only two "states," or 1, it can easily be sent over a wire as an

electrical pulse where a plus voltage indicates a "1" and a negative voltage a "0." A
bit can also be sent as an audio signal, where one tone indicates a "1" and another

tone a "0" (as used in a telephone modem).

In parallel communication, all the bits that represent the character are sent

simultaneously over individual channels. By contrast, in serial communication the

bits are sent one after the other over the same channel.

In addition to the data bits that represent the character, there are other special bits that

are sent over the channel. The data bits are preceded by a start bit and may be

followed by a parity bit and one or two stop bits.

165

A start bit is always used to signal the beginning of a new character to the receiving

device.

A parity bit is sometimes added to provide a means of error detection. If the parity is

specified as odd, the parity bit will equal zero if the sum of the data bits is odd, but

the parity bit will equal one if the sum of the data bits is even. Thus, with odd parity,

the sum of. the- data bits plus the parity bit is always odd. Similarly, with even parity,

the sum of the data plus parity bits is always even.

The stop bit(s) follow the parity bit, if any, and indicate the end of a character to the

receiving device. While different systems use various stop bit lengths, the Model 100

allows either one or two stop bits.

Before you can use the RS-232C serial port on the Model 100, you must set the

following parameters:

1. Baud rate, r: The baud rate is the speed at which the characters are sent. The
following values are permitted:

r Baud rate r Baud rate

1 75 6 2400
2 110 7 4800
3 300 8 9600
4 600 9 19200
5 1200

Note: 300 and 1 200 baud are common speeds for transmission of data over

telephone lines using audio tones. The Model 100 has a built-in modem which

allows a direct connection to the telephone lines for 300 baud communications.

However, if you use the serial port, rather than audio tones through the modem,
you can communicate with other serial devices at any of the baud rates listed

above.

2. Word length, w: This is the number of data bits used to represent each ASCII
character. The three values permitted with the Model 100 are six, seven, or eight

data bits.

3. Parity, p: The parity bit, if any, is specified as one of:

p Parity

E Even
O Odd
N None
1 Ignore

4. Number of stop bits, b: You can specify either one or two stop bits (s= 1 or

s = 2).

5. Line Status (XON/XOFF), s: Serial communications devices typically use some
form of "handshaking" to synchronize transmitting and receiving. This is

frequently necessary at the higher baud rates (1200 and above) to prevent

transmitting characters to a device which is not ready to receive them.

The Model 100 uses a handshaking technique known as XON/XOFF. The
receiving device sends an XOFF signal to the transmitting device if it cannot

166

receive any more characters (if a buffer is. filled). The receiving device then

sends an XON signal when it is ready to receive more characters.

In this way, the receiving device can make the transmitting device wait, as

necessary, to give it a chance to catch up. You tan enable or disable this feature

(the XON/X0FF handshaking) by specifying E, or D respectably.

As an example, the specification

37N1D

would set llrc RS-232C serial purl fur 39ft banJ, 7 data bits wynl length, no
parity, 1 stop bit and disable XON/XOFF.

Experiment #1 Transferring a BASIC Program

Suppose you have written a BASIC program in the Model 100 which you plan to use

later in your office system.

The following procedure will allow you to transfer a BASIC program to another

computer:

1. Connect the two computers via an R5-232C cable (2644*3) and a Null Modem
Adapter. See figure below.

^r" Tsnnlnatof

Plug

2. Set communication parameter in your office system that the Model 1 9ft can

match (refer to your system's owner's manual or reference guide).

3. Load the program (in ASCII formal) you wish to transfer into the working

memory of the Model 10W.

4. Set the serial communication parameters to match those of the office system by

entering:

SAVE "COM:RWPBS"

where R = baud rate; W = word length; P = parity; B = stop bit; S = line

status.

Note: If a serial printer (rather than another computer) is connected to the serial port,

you can use the same command to obtain a listing of the program in the printer.

167

Experiment #2 Transferring Files to Another

Computer using TELCOM
You can transfer any ASCII file to another computer using TELCOM, one of the

built-in Application Programs of your Model 100. This includes any BASIC program

as long as it has been saved as a RAM file in ASCII format (SAVE
"FILENAME",A).

1

.

Link the two computers together as shown in the previous experiment.

2. Load and execute a communications program that allows data transfer in the host

computer.

3. Set communication parameters in the host that the Model 100 can match (refer to

your system's owner's manual or reference guide).

4. From the Model 100 Main Menu, position the cursor on the word TELCOM and
press (ENTER) . The display then shows:

5.

6.

© The first line reminds you of the current serial communications status.

® The second line is the TELCOM prompt which lets you select one of the

functions displayed on the last line of the screen.

® The last line shows the definitions of the Function Keys in TELCOM.

Change the communication status to match those of the other computer by
pressing the Status Function Key ((H)) followed by the desired parameters.

Enter the Terminal Mode by pressing the Terminal Function Key ((Ml). The

bottom line of the display should change to:

168

The last line indicates the Function Key commands available in the Terminal Mode.

Function Key (ED now contains a function that allows you to see the "Previous"

screen.

Function Key (ED now contains a feature for Downloading or receiving

information from another computer.

Function Key (F3) now contains a feature for Uploading or sending information

to another computer.

Function Key® has now become a Full/Half duplex toggle switch. In Full

duplex any character that you type on the Model 100's keyboard is first sent to

the host computer before it appears on the display. In Half duplex, on the other

hand, characters appear on the display just as they are sent to the host.

Function Key (ED, which is not displayed along with the other functions, offers

an "Echo" feature which lets you obtain a "hard copy" of whatever is being

received (assuming there is a printer connected to the Model 100). Once (ED has

been pressed, it will appear displayed each time you access the Terminal Mode
of TELCOM.

Function Key (ED, Bye, lets you exit the Terminal Mode.

7. Now that the computers are connected with matching communication parameters,

decide on a file with the extension .DO that you wish to send and press (F3), the

Upload Function Key. The prompt:

File to Upload? f§

will be displayed.

8. Enter the name of the file to be transferred. The prompt

Width:

will appear. Enter a number between 10 and 132 to format the file as it is sent

out. If you simply press (ENTER) , the file will be sent "as is."

The word U p on the last line of the display will appear in reverse as the file is being

Uploaded. The word will return to normal display when file transfer is complete. If

the other computer sends an XOFF command, transmission will pause and the word
Wait will appear on the bottom line of the display. If the other computer then sends an

XON command to proceed, the word Wait disappears.

Note: A BASIC program may be transferred if it has been saved in ASCII, but it

cannot be transferred as a .BA file. If you attempt to transfer a .BA file, the error

message

NO FILE
UpI oad aborted

will be displayed. If you specify a filename which does not exist, the same error

message appears.

169

Experiment #3 LOADing a BASIC Program

Suppose you have written a BASIC program on another computer which you want to

execute on your Model 100. The serial port can be used to transfer the BASIC
program to working memory using the following procedure.

1. Connect the computers together as shown in the last two experiments.

2. From the Model 100 Main Menu, enter BASIC.

3. Enter the command

LOAD "COMsRWPBS"

where RWPBS correspond to the baud rate, number of data bits, parity, number
of stop bits and line status (XON/XOFF) of the other computer.

4. Load and execute a communications program on the other computer which will

transfer a BASIC program in ASCII format. This program should send a control

Z (ASCII value 26 decimal) as an end-of-file character. If the other computer's

program does not terminate the file in this fashion, you can terminate the load

manually from the Ml 00 keyboard by pressing (BREAK) .

Note: (BREAK) terminates transfer with an I/O (input/output) error message.

Ignore this message. The data has been transferred.

5. Since the program does not display as it is loaded, you will probably want to list

it to confirm that it was transferred properly. If a few errors are found, they can

be corrected using the Editor. After the file has been successfully transferred, it

can be saved in RAM in the usual way.

Experiment #4 Loading a File with TELCOM
You can transfer any ASCII file to the Model 100 from another computer using

TELCOM. This includes a BASIC program so long as it is transferred in ASCII
format. The procedure is:

1. Link the Computers through an RS-232C cable and a Null Modem Adapter.

2. From the Model 100 Main Menu, enter TELCOM.

3. If necessary, change the communication parameters to match those of the host

system.

4. Press (M) to enter the Terminal Mode.

5. Press (E2) to Download a file. The prompt:

File to Download? |
will be displayed. Enter a valid filename with either no extension or a DO
extension. If you enter a filename with the .BA extension, the error message:

Download aborted

will appear, since BASIC programs can only be transferred in the ASCII format.

After the filename is entered, the word Down will appear in reverse video.

170

6. Load and execute a communications program on the other computer which will

transfer the desired ASCII file.

7. To terminate the file transfer and mark the end of the file, press (12) again.

8. To exit the Terminal Mode, press (F® and then (Y) when the prompt

Disconnect? j§

appears on the screen. If you press (N) . you will return to the Terminal Mode.

Experiment #5 Output to the COM: device

You can use a BASIC program to communicate with peripheral devices through the

serial port. If you use the OPEN statement to define a COM: file, you can then direct

output to the serial port with a PRINT statement, or input data from the serial port

with an INPUT statement. This will be illustrated with examples in the following

experiments.

Suppose you want to input a name from the keyboard and then send it out the serial

port. From the Model 100 Menu, go to BASIC and enter the following program from

the keyboard:

10 OPEN "COM:3701D" FDR OUTPUT AS 1

20 INPUT "NAME"; N$
30 PRINT «i , N$
40 GOTO 20

Note: The peripheral device connected to the RS-232C port should have the same

configuration (3701D).

Before executing this program, you should connect a peripheral device with an

appropriate RS-232C cable to the M100 serial port and use the correct port status.

Once the peripheral device is connected and ready to receive, execute this program.

You will see the prompt:

NAME?

Enter any name, for example

NAME? JONATHAN SMITH

The name will be sent out the serial port and received by the peripheral device.

Another prompt will appear on the display to allow transferring as many names as

desired. You will have to press (BREAK) to terminate this program.

Line 10 The OPEN statement specifies the COM: device to be used for output as file

number 1. The serial port will use 300 baud, 7 data bits, odd parity, 1 stop bit and

XON/XOFF disabled.

Line 20 The INPUT statement prompts for a name from the keyboard and stores it in

the string variable N$.

Line 30 The name contained in NS is sent to the serial port by printing to file

number 1.

171

Line 40 Execution jumps to line 20 to allow another name to be entered. Lines 20

through 40 form an infinite loop.

Experiment #6 Input from the COM: device

The procedure to input from the serial port is quite similar, as illustrated by changing

the previous program as follows:

Enter Edit Mode and change lines 20 and 30 to

20 INPUT *1 , N$
30 PRINT N$

Before executing the program, make sure the peripheral device is properly connected

to the serial port and ready to transmit a string of characters. The string should be

terminated with a comma or a carriage return and a line feed.

Execute this program, then have the peripheral device send a string. If everything is

working properly, you will see the string which was sent from the peripheral device

displayed on the Model 100.

Since the program loops back to the INPUT statement, you can have the peripheral

device send as many strings as you wish. You will have to press (BREAK) to terminate

the program.

Experiment #7 Interrupt from the COM: device

You can interrupt execution of a BASIC program from the serial port. This can be
very useful to allow communications with a peripheral device which transmits data at

unpredictable times. For example, a lab instrument might send test results sporadically

as they are completed. Using the interrupt capability, you could use the Model 100 to

run a BASIC program, yet still capture the data from the instrument whenever it is

sent.

If you have another terminal, such as another computer or a CRT terminal, you might
try the following experiment which will serve to illustrate the concept.

Clear memory with the NEW command and enter

10 DPEN "COM:3701D" FDR INPUT AS 1

20 ON COM GOSUB 100
30 COM ON
40 PRINT I : 1=1+1 : GOTO 40
100 PRINT INPUT* (1,1) : RETURN

Execute this program. You will see numbers starting at zero and incrementing by one
displayed along the left margin. These numbers will continue to print until a character

is received through the serial port. When this happens, the character received will also

be displayed.

If a string of characters is received through the serial port they will all be displayed

before the program continues printing the numbers.

172

Line 10 The OPEN statement defines the serial port for input as file number 1 at 300
baud, 7 data bits, odd parity, 1 stop bit and XON/XOFF disabled.

Note: This configuration should parallel that of the peripheral device. Change the

configuration if it is not the same.

Line 20 An interrupt subroutine beginning at line number 100 will be executed if a

character is received through the serial port.

Line 30 The serial port interrupt capability is turned on. You can prevent the serial

port from interrupting the program with the

COM OFF

statement. Similarly, if you wish to delay interrupts, you can use the

COM STOP

statement which defers the interrupt until a COM ON statement is executed.

Line 40 This loop prints numbers starting at zero and incrementing by one each time.

Since it is an infinite loop, you must press [BREAK) to terminate the program.

Line 100 When a character is received through the serial port, an interrupt is

generated and execution jumps to this line. No interrupts can occur during an interrupt

subroutine. If a character is received during the interrupt subroutine, it will be

remembered, and another interrupt will occur when the current one is completed.

This line will display the received character and then return to the main program. The
INPUTS (1,1) statement inputs one character from file number 1. In general, the

function

INPUTS (n,f)

will return n characters from file number/. In the case of the COM: device, the

program will wait until all n characters are received before it returns.

Experiment #8 Multiple Character Interrupt

While the procedure in the previous experiment works well with short strings, it will

not work if the peripheral device sends strings longer than around 20 characters at a

time. You can handle this situation by having the interrupt subroutine input all the

characters in the string before returning.

This experiment shows how to modify the program to accommodate longer strings

with interrupts. Change line 100 to

100 N$ = INPUT* (1,1) : PRINT N$

!

and add two new lines

110 IF N$OCHR$(13) GOTO 100
120 PRINT : RETURN

173

List the program to confirm that it is:

10 OPEN "COM:3701D" FOR INPUT AS 1

20 ON COM GOSUB 100
30 COM ON
40 PRINT I : 1=1+1 : GOTO 40
100 N$ = INPUTS (1,1) : PRINT N$

5

110 IF N$OCHR$(13) GOTO 100
120 PRINT : RETURN

Execute this program and have the peripheral device send a long string of characters

terminated with a carriage return. You should see the string correctly displayed on the

Model 100.

The program has been modified to keep inputting characters from the serial port while
still in the interrupt subroutine. The interrupt subroutine will be terminated in line 120
if a carriage return (ASCII value 13) is detected in line 110. The PRINT statement in

line 120 is necessary to print a line feed before returning to the main program.

A word of caution: Since the receiving program is written in BASIC, and the serial

port buffer has a limited capacity, you still cannot receive long files without missing
some characters. This is especially true at higher baud rates.

The procedure described above should therefore be used only with applications

requiring relatively short strings to be transmitted at any one time. It is also

recommended that you keep the baud rate at 300 or below, if possible.

What you have learned:

In this lesson you were shown how to use the serial port to communicate with other
serial devices. This allows transferring BASIC programs and data files between
computers and sending and receiving data between various peripheral devices.

174

ADDRESS

Lesson #15 TELCOM Applications

In this lesson you will learn how to use the Terminal Mode of the TELCOM
application program and the built-in modem to communicate with other computers

over the telephone lines. However, before starting any experiments using the Terminal

Mode, it is a good idea to review the overall capabilities of TELCOM.

mam^
CALL

PEEK

VARPTR

ft

1IH

TELCOM Overview

As you know from reading the owner's manual, TELCOM allows your Model 100 to

be used as an automatic telephone dialer (in the Entry Mode), and to communicate

with other computers ("host" systems) over the telephone lines (in the Terminal

Mode). The Entry and Terminal modes may also be used together to dial a telephone

number and to "log-on" to a system automatically.

In the Terminal Mode you can access a wide variety of information services, including

bulletin boards, news, weather, data banks, other computers or stock market

information. You can make use of this information in a variety of ways. For example,

you may:

• display it on the LCD
• print it on a printer

• save it in a file

• analyze the data using a BASIC program to graph it, compute statistics, make
comparisons against previous values, and more!

You can also transfer programs or data files to other computers located miles, or even

thousands of miles, away.

Before you start using any of the features of TELCOM, the Model 100 must be

connected to the telephone lines (consult your owner's manual for detailed

instructions). In this lesson we will assume that your Model 100 is connected to

modular telephone lines using the Modem Cable (26-1410).

Also, we make the assumption that you have access to a computer bulletin board, or a

computer information service (such as Dow Jones or CompuServe). Contact your local

Radio Shack Computer Center dealer for assistance in locating a local bulletin board if

you cannot locate one on your own.

175

Accessing TELCOM
To access TELCOM, simply move the Cursor over the word TELCOM at the Main
Menu and press (ENTER) . The display then shows:

When first accessing TELCOM, the Model 100 enters the Entry Mode immediately.

© The first line indicates the status of the communication parameters. They appear

listed in the order:

• R, baud rate

• W, word length

• P, parity bit

• B, stop bit

• S, line status

The last parameter, 10 pps, indicates the rate for autodialing, ten pulses per

second.

® The Telcom: prompt in the second line lets you select any of the functions

displayed on the last line of the display.

® The last line displays the definition of the Function Keys (M) - O) in

TELCOM 's Entry Mode.

For a complete discussion of the role of the Function Keys in the Entry Mode, see

"Using the Function Keys in Entry Mode" in the owner's manual (p. 79).

(When entering the Terminal Mode the display of the Function Keys will change to

reveal their new uses.)

Experiment #1 The Communication Parameters

Before entering the Terminal Mode and attempting communications, you must know
the communication parameters used by the host system. These are usually provided

when you subscribe to an information system and are likely to be listed in your user's

guide.

Once you know the communication parameters used by the host system, you must be

sure that the Model 100's own parameters match those of the host exactly.

176

Table 15-1 below, describes the allowable settings for the communication parameters.

Model 100 Communication Parameters

You Type: For:

Baud Rate M
1

2

3
4
5
6
7

8
9

"modem" (300)*

75 baud
110 baud
300 baud
600 baud
1200 baud
2400 baud
4800 baud
9600 baud
19200 baud

Word Length 6
7

8

6 bits

7 bits

8 bits

Parity

O
E
N

Ignore parity

Odd parity

Even parity

No parity

Stop Bit 1

2

1 stop bit

2 stop bit

Line Status** E
D

Enable (XON)
Disable (XOFF)

Pulse Rate 10

20
10pps
20pps

Table 15-1

* Note: The Model 100 uses 300 baud when the built-in modem is in use. If you use

a number to set the baud rate, even if that number is 3 (for 300 baud), the modem
becomes disabled and, instead, the RS-232C interface is activated. Therefore, always

select the letter M whenever the built-in modem is to be used.

If the communication parameters of the Model 100 need to be changed to match those

of the host, simply:

1. Access TELCOM.

2. Type STAT, or press (FD, the status Function Key.

3. Type the new communication parameters observing the correct order and press

(mm.
To verify that the parameters were changed, simply press H) again and then (ENTER] ,

The new parameters will appear on the display.

177

Experiment #2 Entering the Terminal Mode
There are two ways to enter the Terminal Mode:

• Automatically via auto-dialing

• Manually via the Term Function Key ((H))

Manual Entry

Suppose you wish to contact an information service whose telephone number is

123-4567.

1. Set the ANS/ORIG switch (on the left side of the Computer) to ORIG.

2. Access TELCOM.

3. Lift the receiver and dial the host's telephone number.

4. When the host answers, you will hear a high-pitched tone. Press Term ((H)).

After pressing Term, the Model 100 will produce a high-pitched tone to indicate it has

entered the Terminal Mode.

Also, the definitions of the Function Keys will change as the display shows:

For a detailed discussion of the role of the Function Keys in the Terminal Mode,
consult your owner's manual.

Automatic Entry

To enter the Terminal Mode automatically, you must first store the host's telephone

number in the ADRS.DO file followed by the special symbols < >. This phone
number and the symbols < > must also be enclosed within colons.

For example, the telephone number of our hypothetical information service would be

stored as:

IS :123-45B7 <>:

where IS is your code for the information service.

(If you require extra information for storing telephone numbers in the ADRS.DO file

consult your owner's manual.)

178

Then follow these steps:

1

.

Set the ANS/ORIG switch to ORIG.

2. Access TELCOM.

3. Press Find ((FT)) and type the code for the information service (IS in this case).

4. Press Call ((F2)) after the number appears. You will not have to lift the receiver

when calling a host system in this way.

The Model 100 will "echo" a ringing tone or a busy signal (in which case you have

to redial the number).

After dialing, the Model 100 produces a high-pitched tone to indicate that it has

entered the Terminal Mode and the display changes to reveal the new roles for the

Function Keys.

For a detailed discussion of the role of the Function Keys in the Terminal Mode,
consult your owner's manual.

The Log-On Sequence

Once in the Terminal Mode (whether you entered automatically or manually), you

must comply with the log-on sequence to gain access to the services offered by the

information service.

Most information services will provide you with a User ID and a Password to serve

as confirmation that you are authorized to access a host system.

Detailed instructions for complying with the log-on procedure should be described in

your user's guide.

Experiment #2 Automatic Log-On

The Model 100 gives you the option to combine the Entry and Terminal Modes to dial

and log-on to an information service automatically. This is a practical, time-saving

feature, especially if you make regular use of an information service.

In this experiment we will create an automatic log-on sequence for the hypothetical

information service from the previous experiment. This automatic log-on sequence will

serve as a model for creating other log on sequences for real host systems.

Let's assume that IS (Information Service) from the previous experiment specializes in

providing information of particular interest to Model 100 owners.

Let's assume that the log-on sequence for gaining access to this system consists of:

1. Sending two carriage returns.

2. Answering the prompt User ID.

3

.

Answering the prompt Password.

in that order. Your User ID, for this example is 9768,453 and your Password,

"Two-tone." Also, let's assume that after answering these prompts, IS asks you to

179

select an item of interest, either News or Mailbox. If you so choose, you can also

include the selection of the item in the log-on sequence.

Briefly, an automatic log-on sequence consists of identifying the host's log-on prompts

and sending the correct responses.

The Model 100 uses a series of Key Commands to anticipate and answer the log-on

prompts. These commands, listed in Table 15-2 are used as part of any log-on

sequence.

TELCOM Auto Log-On Key Commands

Key Meaning

Wait for a specified character

Pause for 2.0 seconds
Send a specific character

Causes the character after " to be sent as
a

"
control" character (i.e., "M is the same

as (ENTER))

Table 15-2

To log-on automatically, some of the Key Commands, along with the correct

responses to the prompts, must be inserted between the < > symbols and stored along

with the telephone number in the ADRS.DO file.

After complying with the required responses, the log-on sequence should look like

this:

IS :123-45G7 < *M*M?U976B f453*M?PTwo-tone*r1?
SNews'M)-;

This is an explanation of how the above log-on sequence was determined:

1. Access the ADRS.DO file and position the cursor over the symbol >.

2. Referring back to the log-on sequence, you must first send two carriage returns.

Type
AM "M (the symbol

A
is obtained by pressing (SHIFT) (6)).

3. Next, tell the Model 100 to anticipate the first prompt from the host, User ID, by
typing the Key Command ? (wait for a specific character) and then include a

single character from the prompt— we used the letter U.

4. Now, answer the prompt by typing your User ID: 9768,453.

5. Enter your ID number by typing
"
M. You 'll recall from the table of Key

Commands that
AM is the same as (ENTER) .

6. Tell the Model 100 to anticipate the next prompt, Password, by typing ?P, and

then type your response (Two-tone). Don't forget to enter this by typing "M.

7. If you want to include the service you wish to access tell the Computer to wait

for the next prompt, What service?, by typing ?W, then follow this with News.

Again, you must enter this by typing "M.

180

The process for determining other log-on sequences always follows this pattern. For

more specific instructions see "Creating an Auto Log-On Sequence" in your owner's

manual (p. 91).

After this log-on sequence has been stored in the ADRS.DO file, you can access

TELCOM and press FIND ((H)) to retrieve IS and then call the telephone number by

pressing CALL ((ED). After a few seconds, you'll be logged into the system and have

access to the News service.

This is an example of the kind of information you would get:

GOOD NEWS FOR M100 OWNERS:
IT WAS LEARNED THAT SEVERAL NEW YENDDRS
HAUE RELEASED SOFTWARE PRODUCTS FOR THE
M100 PORTABLE COMPUTER. CONTACT THEM
DIRECTLY FOR MORE INFORMATION:

ABC SOFTWARE INC.
1234 ANYSTREET. NEW YORK. NY 00100

DEF MICRDWARE
5G78 SCENIC DR. COMPUVILLE. CA 145G7

MACROSOFT
387B WONDER WAY > WETSVILLE. WA 98734

To log-off the system, type

BYE (ENTEJD or press ffffi.

A log-off message, such as

THANK YOU FOR USING THE M100 USERS
BULLETIN BOARD SYSTEM
DISCONNECTING.

.

may be displayed. Then TELCOM will display the prompt:

Disconnect?

Enter (Y) to disconnect. If you enter (N) . you will keep the telephone connected

and return to the Terminal Mode. If you disconnect the telephone, you will return to

the TELCOM system as evidenced by the prompt:

Te 1 com :

Hints and tips...

When you first connect to a computer system, you might notice either of two strange

things happen on the display. You might, for instance, see nothing display as you type

on the keyboard. This would happen if you have the Model 100 set for Full Duplex

and the remote system is set for Half Duplex. If this happens, press ®) to toggle

from Full to Half Duplex.

181

On the other hand, you might see every character you type displayed twice. This

would happen if you have the Model 100 set for Half Duplex and the remote system is

set for Full Duplex. If this happens, press G3) to toggle from Half to Full Duplex.

You can transfer files over the modem using the Upload and Download capabilities of

the terminal. Refer to the previous lesson on serial communications which discusses

how to do this and how to use the other features of the terminal mode. The only

change required is to specify "M" for the baud rate, R, so that communication is

through the built-in modem.

Experiment #3 Log-On from a BASIC Program

The built-in modem can be used from BASIC to communicate with other devices. The
procedure, however, is not especially easy, and is therefore recommended only for

advanced or adventuresome programmers. While it is probably easiest to transfer files

and communicate with other systems using TELCOM, there are times when it is

desirable to use BASIC. For example, you can write a BASIC program to call a stock

quotation service on a periodic basis, say every hour, and save the hourly quotes in a

data file for later analysis.

The following program segment will dial and log-on to the hypothetical IS

(Information Service) from the previous two experiments:

100 Dt = "123-4567<'M'M?U97S8 .453" M?PTwo -tone "M?
SNews"M>"

110 M = YARPTR(D$)
120 D = PEEK(M+1) + PEEK(M+2)*25B
130 CALL 21200 : CALL 21293. 0>D

Line 100 The telephone number and-log on sequence are stored in the string variable

D$.

Line 110 The VARPTR function returns an address M which helps locate the string

D$. Location M contains the length of the string variable, location M + l contains the

least significant byte of the two byte starting address of the string, and location M + 2

contains the corresponding most significant byte of the address.

Line 120 The address of the string variable D$ is computed and stored in the numeric

variable D. The function PEEK(x) returns the decimal value of the contents of

memory location x.

Line 130 The CALL statement is used to call a machine language subroutine. The
general form is

CALL adrAHL

where adr is the starting address of the subroutine, A is an optional eight bit value to

be passed through the A register, and HL is an optional 16 bit value to be passed

through the HL register. The first statement

CALL 21200

calls a machine language subroutine in the Model 100 ROM which "takes the

182

telephone off the hook." The second statement

CALL 21293»0»D

calls a machine language subroutine in the Model 100 ROM which dials the telephone

number and sends the log-on sequence stored in D$.

This program is incomplete in that it only dials and logs-on to a host system. There is

no provision for further communication with the other system. For example, there is

no way to disconnect from the other system or even hang up the telephone.

Experiment #4 BASIC Communications Through
the Modem
The previous experiment showed how to log-on to the hypothetical Information

Service, but no provision was made for receiving the NEWS service.

This program segment will display received text after the log-on sequence, send the

log-oft sequence when an end-of-file character CTRL-Z is received, and hang up the

telephone.

5 MAXFILES=2
140 OPEN "MDM:7I1D" FOR INPUT AS 1

150 I*=INPUT$(i fl) : PRINT I*i
160 IF I*OCHR$(2G) GOTO 150
170 OPEN "MDM:7I1D" FOR OUTPUT AS 2
180 PRINT #2> "BYE" + CHR*(13)
190 CALL 21179
200 CLOSE

Line 5 Since the program has two files open simultaneously, it is necessary to use the

MAXFILES statement to provide buffer space for them.

Line 140 The modem is opened to accept input using file number 1 . Note that the

status is included in the OPEN statement, but the baud rate is not specified, since it is

assumed to be 300 baud through the modem.

Line 156 Received characters are returned one at a time by the INPUT$(1,1) function

and then stored in the string variable 1$. Each character is displayed by the PRINT 1$;

statement.

Line 160 It is necessary to look for the end-of-file character CTRL-Z to detect the end

of the NEWS bulletin. If the character received is not a CTRL-Z (CHR$(26)),

execution returns to line 150 to receive the next character. If a CTRL-Z is received,

execution resumes with line 170.

Line 170 The modem is simultaneously opened for output as file number 2 to allow

characters to be sent to the bulletin board system.

Line 180 The log-off sequence BYE plus a carriage return is output to file number 1

(the modem).

Line 190 A machine language subroutine in the Model 100 ROM is executed to

"hang up" the telephone.

183

Line 200 Both the input and the output files are closed.

The two program segments can be combined to allow dialing, logging-on, receiving

and displaying the NEWS text, logging off and finally, hanging up the telephone. The
complete listing would be:

5 MAXFILES = 2
100 D* = "123-45G7<'i rrM?U97G8>453"M?PTwo-torl e

A M?
SNews*M>"

110 M = VARPTR(D*)
120 D = PEEK(M+1) + PEEK(M+2)*25G
130 CALL 21200 : CALL 21293. .D

140 OPEN "MDM:7I1D" FOR INPUT AS 1

150 I$=INPUT$(1 il): PRINT I$!
160 IF I$OCHR$(2B) GOTO 150
170 OPEN "MDM:7I1D" FOR OUTPUT AS 2

180 PRINT «2» "BYE" + CHR$(13)
190 CALL 21179
200 CLOSE

What you have learned:

You have learned how to use the built-in modem to communicate with other systems

over the telephone lines. You have seen that it is possible to communicate in either

TELCOM or BASIC, however, TELCOM is much more straightforward to use.

Several machine language-related functions and statements were presented.

184

Application #1 Calculator

This application program converts your computer into a calculator.

Insert the cassette containing the Calculator program in your cassette recorder.

Rewind the cassette if necessary.

Clear memory with the NEW command and then load the calculator program by

pressing PLAY on the recorder and entering the command:

CLOAD "CALC"

List the program and compare it to Figure 1-1 to verify that it loaded correctly. Save

the program in a RAM file by entering the command:

SAME "CALC"

For convenience, you may also wish to save the calculator program on a separate

cassette. Use the command

CSAVE "CALC"

to write the program to a blank cassette.

This program allows you to use your Computer as a calculator. This means that

numbers may be added, subtracted, multiplied or divided as they are entered from the

keyboard, without having to include them as an expression in a PRINT statement.

Execute the program. There will be no visual indication that anything has happened.

However, if you type the following sequence:

2+3 =

you will see that the result is immediately displayed:

2+3= 5

Notice that this is exactly the way you would enter data to be added on a calculator.

Try the following simple calculations:

Press keys in this order Result

9-2= 7
3.25*7= 22.75
- 1 /3= - .33333333333333
5*6-9.3= 20.7 (30 minus 9.3)

4"2= 16 (4 to the 2nd power)

2 + 3*4= 20 (5 times 4)

2 + (3*4)= 14 (2 plus 12)

(2 + 3)/(2.5*4) = .5 (5 divided by 1 0)

1/((1+(.5"(-2)))/(1+.5))= -3 (1 divided by 3.333 .. .)

Notice that exponentiation and parentheses are both supported. Keep in mind that the

calculator computes the result immediately as each of the operators is entered. The
equal sign (=) prints the result.

185

If you make a mistake while entering data in the calculator mode, you can press

(ENTER) to cancel and start over. You cannot back up to correct an error.

You can use parentheses to make the order of computation unambiguous. The program
allows nesting parentheses up to ten deep.

Here is the listing of the Calculator Program:

100 R<L)=0 : S$(L)="+"
110 GOSUB 500
120 IF Ct=" ." THEN GOSUB 600 s GOSUB 800
130 IF ASC(C*)>47 AND ASC(C*)<58 THEN GOSUB G00

GOSUB 800
140 IF C$=">" THEN NU=R(L) : L=L-1 :

GOSUB 800 : GOTO 110
150 IF C*="+" THEN S$(L)=C$ GOTO 110
160 IF C$="-" THEN S*(L)=C* GOTO 110
170 IF C$="*" THEN S$(L)=C$ GOTO 110
180 IF C$="/" THEN S*(L)=C$ GOTO 110
185 IF £%=>"" THEN S$(L)=C$ GOTO 110
190 IF C*="(" THEN L=L+1 : R(L)=0 : S$(L)="+" :

GOTO 110
200 IF C$="=" THEN PRINT R(L) : L=0 : GOTO 100
205 IF ASC(C*)=13 THEN PRINT " CANCELLED" : L=0

GOTO 100
210 GOTO 110
500 REM SUBROUTINE GET CHARACTER
510 C*=INKEY$: IF C$="" GOTO 510
520 PRINT c*;
530 RETURN
B00 REM SUBROUTINE GET NUMBER
B30 NU =

B35 IF C$="." THEN DF=-1 : GOTO B75
S40 NU = 10 * NU + VAL(C$)
B50 GOSUB 500
G55 IF C$="." THEN DF=-1 : GOTO B75
BE0 IF ASC(C$)<48 OR ASC(C$)>57 THEN RETURN
B70 GOTO 635
B75 GOSUB 500
B77 IF ASC(C*)<48 OR ASC(C*)>57 THEN RETURN
B80 NU = NU + MAL(C$) * 1CTDF
S90 DF = DF-1
720 GOTO 675
800 REM THIS SUBROUTINE COMPUTES THE
810 REM RESULT AT THE CURRENT LEVEL
820 IF S$(L)="+" THEN R(L) = R(L) + NU RETURN
830 IF S$(L)="-" THEN R(L) = R(L) - NU RETURN
840 IF S$(L)="*" THEN R(L) = R(L) * NU RETURN
850 IF S$(L)="/" THEN R(L) = R(L) / NU RETURN
8B0 IF S$(L) = "'" THEN R<L) = R(L) " NU RETURN

186

Explanation of the program:

Line 100 The array R contains the result and the array S$ contains the most recent

operator at level L. The program begins at level 0. Levels are analogous to

expressions within parentheses. The level is increased by one as a left parenthesis is

encountered, and decreased by one as a right parenthesis is encountered.

Line 110 A subroutine is used to get a character from the keyboard. The character is

returned in the string variable C$.

Lines 120 - 130 If the character returned is a decimal point (.) or a digit (0 - 9), then

a subroutine (GOSUB 600) is used to build the rest of the number. The value of the

number is returned in the numeric variable NU. Another subroutine (GOSUB 800) is

used to compute the result of applying the operator to the previous result (if any) and

the current value NU. The result is stored in the appropriate level of the array R.

Line 140 If a right parenthesis is typed, the value at the current level is combined

with the value at the previous level. This is why the operator at the previous level was
saved in the S$ array.

Lines 150 - 185 If an arithmetic operator is typed, it is saved in the S$ array.

Execution then returns to line 1 10 to get the next character.

Line 190 If a left parenthesis is typed, the level is increased by one, the result at the

new level is initialized to zero, and the operator is assumed to be addition. Execution

then returns to line 1 10 to get the next character.

Line 200 If an equals sign (=) is typed, then the answer, which is the result at the

current level, is displayed. The level is initialized to zero and execution jumps to line

100 to begin a new problem.

Line 205 If (ENTER) is pressed, then the message CANCELED is displayed and a new
problem is begun.

Line 210 If any other key is inadvertently typed, it must be a mistake, and therefore

does nothing to the calculation. Execution jumps back to line 1 10 to get the next

character.

Lines 500 - 530 A REMark statement is used for documentation in line 500. A REM
statement is ignored by the BASIC language interpreter and is used to insert

explanatory comments for the convenience of the programmer. This subroutine

continually scans the keyboard until a key is pressed. The character is stored in the

string variable C$ and displayed before returning. The INKEY$ function returns a null

string

(" ")

if no key is pressed.

Lines 600 720 This subroutine builds a number with or without a decimal point. If

the number has a decimal point, the subroutine first builds the part of the number to

the left of the decimal point, and then builds the part of the number to the right of the

decimal point. Since the characters are originally in string form (C$), the VAL
function is used to convert to numeric form. The number is assumed to be completed

when any character other than a digit or a decimal point is typed.

Lines 800 - 860 This subroutine computes the result at the current level. The
appropriate operator (+ , - , *, or

A

) is applied and the result stored in the R array.

187

Application #2 Memory Master
Game

This challenging game will test your ability to memorize a random sequence of

musical tones.

Insert the cassette containing the Memory Master application program in your

cassette recorder. Rewind the cassette if necessary. If you have loaded the Calculator

application program and have not changed the position of the tape, you can speed up

loading the Memory Master program by not rewinding the cassette.

Clear memory with the NEW command and then load the Memory Master program by
pressing PLAY on the recorder and entering the command

CLOAD "MEMO"

List the program and compare it to the listing below to verify that it loaded correctly.

100 CLS : P=RND(-MAL(RIGHT$(TIME$»2))

)

110 PRINT "Want Instructions (Y=vest N=no)"i:
GOSUB 1000

120 IF A$="Y" DR A*="v" THEN GOSUB20000
125 IF A$<>"N" AND A$<>"n" GOTO 100
130 PRINT "Length of sequence L (0-9)" i : GOSUB

1000 : L = MAL(A$)
132 IF L=0 GOTO 800
13a PRINT "How many notes N (2-9) "i : GOSUB 1000 :

N = UAL(A$)
13G IF N=0 OR N=l THEN CLS : GOTO 134
142 NP = : NC = : LAST = SC
145 CLS
150 NP = NP+1
1B0 FOR 1=1 TO L
170 A(I) = INT(N*RND(N)) + 1

180 FOR J=l TO 150 : NEXT J

190 SOUND G000-A(I)*500 »20
200 NEXT I

300 PRINT "Enter sequence"
310 C = : FOR 1=1 TO L
320 A$=INKEY* : IF A*="" GOTO 320
322 IF A$<"1" OR A$>"9" GOTO 320
324 SOUND G000-(ASC(A*)-4B)*500 ,20
330 Y(I) = ASC(Af) - 48
340 IF Y< I)OA(I) THEN C=l
350 NEXT I

3S0 IF C=l GOTO 500
400 PRINT
410 PRINT "C R R E C T !

"

420 NC = NC+1

189

430 GOTO 600
500 PRINT
510 PRINT "W R N G !

"

G00 PRINT "LISTEN AGAIN" : FOR J=l TO 500 !

NEXT J : FOR 1=1 TO L

610 SOUND 6000-A< I)*500 >20 : PRINTA(I)!
620 FOR J=l TO 150 : NEXT J
630 NEXT I

632 CLS
633 SC = LAST + INT(1000*L*N * NC/NP)
635 PRINT@240>"
640 PRINT@240»"SCORE=" !SC
650 PRINTB0 ,

""

!

700 PRINT "Want to play aSain?"
705 PRINT "ENTER=yes t D=chanSe difficulty! S=stop)
710 GOSUB 1000
712 CLS : PRINT@240»"SCORE=" !SC
714 PRINT@0 t

""

5

720 IF ASC(A*)=13 GOTO 150
730 IF A$="D" OR A$="d" GOTO 130
740 IF A$="S" OR A$="s" THEN STOP ELSE GOTO 650
800 REM Press number keys to hear tones
810 CLS
B20 PRINT "Press any number Key (1 - 9) to"
830 PRINT "hear the tone associated with it."
835 PRINT@280 ."Press ESC to besrin Same"!
840 A$=INKEY* : IF A$="" GOTO 840
850 IF ASK" 1" OR A*>"9" GOTO 100
860 SOUND S000-(ASC(A$)-4B)*500»20
870 GOTO 840
1000 A$ = INKEY* ". IF A*="" GOTO 1000 ELSE PRINT

A* : RETURN
20000 REM :;:::: INSTRUCTIONS ::::::
20010 CLS : PRINT"MEMORY MASTER is a Same which

tests" : PRINT" your ability to memorise a

sequence" : PRINT"of tones."
20020 GOSUB 30000
20030 PRINT"Two different skills are bein9

tested:" : PRINT : PRINT"1. Your ability to
recognize different"

20040 PRINT"tones (pitch) t and"
20050 PRINT"2. Your ability to recall a random" s

PRINT"sequence of events." : GOSUB 30000
20060 PRINT"The objective of the Same is to

maximize"! : PR INT "your score* which is

computed as:"
20070 PRINT" 1000 *N*L*C/T where"
20080 PRINT"N = number of different tones"
20030 PRINT"L = lenSth of sequence"
20100 PRINT"C = number of correct recalls"
20110 PRINT"T = total number of sequences tried"!

: GOSUB 30000

190

20120 PRINT"Bes i n n e rs should select a sequence" :

PRINT"len£fth L = 0"

20130 PRINT"which lets you press the number Keys" :

PRINT"1 through 9 to hear the corresponding"
20140 PRINT"tone." : GOSUB 30000
20150 PRINT"When you haue learned to associate

the" : PRINT"numbe r keys with the tones *

enter a "

201B0 PRINT"sequence length L = 1 and number of"
: PRINT"tones N = 2."

20164 PRIIMT"Press the % 1' Key to match the LOW
tone" : PRINT'or the N 2' Key to match the
HIGHER tone."

201GG GOSUB30000
20170 PRINT"When you have that mastered* increase"

: PRINT"the length of the sequence L to test"
20180 PRINT"your ability to memorize a sequence*"
20190 PRINT'or increase the number of tones N to"

: PRINT"test your ability to recognize
tones : GDSUB 30000

20200 RETURN
30000 PRINTI32B0 ("Press any Key to continue";
30010 PRINT@278t"" 5 : GOSUB 1000
30020 CLS : RETURN

You may wish to save the program in a RAM file by entering the command

SAME "MEMO"

For convenience, save the program on a separate cassette with the command

CSAYE "MEMO"

Execute the program.

In answer to the prompt

Want Instructions (Y=yest N=no)

press (Y) to request instructions on the use of the program. The instructions will be

presented a few lines at a time. Press any key to continue the instructions. After all

the instructions have been displayed you will again see the prompt

Want Instructions (Y=yes» N=no)

Press (N) to proceed with the game. You will be prompted to enter the length of

sequence L. As suggested in the instructions, press () (zero) to select the practice

mode.

As indicated by the display, you may press any of the number keys (1 - 9) to hear the

corresponding tone. The larger the number is, the higher the tone will be. The 1 (one)

key will give the lowest tone and the 9 (nine) key will give the highest tone. Confirm

this by pressing the number keys in sequence (1, 2, ... 9). The game will require you

to memorize the tone associated with the keys. You should therefore practice with the

keys until you feel comfortable with the association. For beginning levels of play it is

only necessary to remember the two lowest tones CD and (2) keys.

191

Return to the game by pressing (ESC) . In fact, if you press any key other than the

number keys, you will return to the game as indicated by the request for instructions

prompt. When you are ready to play the game, press (N) to indicate No instructions.

Enter a (1) for the length of sequence L. Enter (2) for the number of notes N. The

display will clear and you will hear a single tone. Press either (1) or (2) .

depending on which tone you think it is. A message will indicate whether you were

correct or not and the tone will be repeated with the correct key displayed. Your score

will be displayed.

After each play of the game you have three options:

1. You can play another game at the same level of difficulty by pressing (ENTER) .

Your score will reflect the percentage of correct responses at this level of

difficulty.

2. You can change the level of difficulty and continue to play the game by pressing

(D) . You can increase the length of the sequence to test your ability to

memorize random events. You can increase the number of different tones to test

your ability to recognize pitch. Your score from any previous levels of play will

be added to the present level score.

3. You can end the game by pressing (S) .

Explanation of the program:

Line 100 The display is cleared and the random number generator is initialized using

the current time in seconds.

Lines 110 - 125 The user may request instructions or proceed with the game. A
subroutine is used to wait for and return a single character from the keyboard. The
character is stored in the string variable A$. A subroutine is used to print out the

instructions if requested.

Notice that the IF statements in lines 120 and 125 are testing for both upper and lower

case characters. This is a useful technique which you may wish to incorporate in your

own programs. Since there is no way to know whether the CAPS LOCK key is

depressed or not, this technique ensures a correct response in either case.

Notice also that the IF statement in line 125 traps any key other than Y or N by

repeating the prompt. This technique is also useful in general to prevent undesired

reponses to mis-typed keys. This technique of "fool proofing" should be used

whenever possible to prevent undesired program behavior.

Lines 130 - 132 Another way of trapping inappropriate keyboard input is illustrated. If

a non-numeric key is pressed, then VAL(A$) returns a value of zero. The program
will then treat this the same as having pressed () .

Lines 134 - 136 The user is prompted to input the number of notes. Another trap is

used to prevent an inappropriate response.

Lines 142 - 200 A sequence of tones of length L is generated. A number from 1 to N
is randomly generated and stored in the numeric array A(I). The frequency of the

tone, used in the SOUND statement, is related to the random number using the

formula 6000 - A(I)*500

192

Lines 300 - 350 The user is prompted to enter his answer in the form of a sequence of

L keys. The tone is heard as each key is pressed (Line 324). A flag is set (C = 1) if

a key is pressed out of sequence (Line 340).

Lines 360.- 510 The flag (C) is checked to determine if the user's answer was correct

or not. The number of correct responses (NC) is incremented if the answer was

correct.

Lines 600 - 630 The correct sequence of tones is replayed to provide feedback to the

user. Note the use of FOR/NEXT loops (Lines 600 and 620) to cause a short pause

between tones.

Lines 632 - 740 The score is computed and displayed. Note that the score is added to

the cumulative score (LAST) from any previous level of play. The user is allowed to

continue playing at the current level, change the difficulty level or stop the game. Any
other response will result in the prompt being redisplayed (Line 740).

Lines 800 - 870 This section of the program lets the user listen to the tones associated

with the number keys (1 through 9). When any key other than a number key is

pressed, execution jumps back to the beginning of the program.

Line 1000 This subroutine continuously scans the keyboard (A$ = INKEY$) and waits

for a key to be pressed (A$ will be null until a key is pressed). When a key is

pressed, it will be stored in the string variable A$ and displayed before execution

returns.

Lines 20000 - 20200 This subroutine displays the instructions. A subroutine (GOSUB
30000) is repeatedly called to wait for a key to continue the instructions.

Lines 30000 - 30020 This subroutine displays a prompt to remind you to press any

key to continue the instructions. It also calls a subroutine (GOSUB 1000) to wait for

any key to be pressed before returning.

193

Application #3 Descriptive Statistics

This application program computes a variety of common statistics and prints a

histogram.

Insert the cassette containing the Descriptive Statistics application program in your

cassette recorder. Rewind the cassette if necessary. If you have loaded the Memory
Master application program and have not changed the position of the tape, you can
speed up the loading of the descriptive statistics program by not rewinding the

cassette.

Clear memory with the NEW command and then load the Descriptive Statistics

program by pressing PLAY on the recorder and entering the command:

CLOAD "STAT"

List and compare it to the listing below to verify that it loaded correctly.

100 DIM A(100) .F(10)
105 CLS
110 INPUT"RAM or CASSETTE FILE (R or C)"!T*
120 IF T$<>"R" AND T*<>"C" GOTO 105
130 INPUT"FILE NAME" !N*
140 IF T*="R" THEN N*="RAM:"+N*
150 IF T*="C" THEN N*="CAS:"+N*
1S0 OPEN N$ FOR INPUT AS 1

165 N=l
170 INPUT #1 »A(N)
180 IF E0F(1) GOTO 210
190 N=N+1
200 GOTO 170
210 CLOSE
220 CLS
230 INPUT"OUTPUT DATA (Y or N)"5T$
240 IF T$="N" GOTO 350
250 IF T*<>"Y" GOTO 220
2S0 PRINT"OUTPUT ON LCD, LINE PRINTER OR BOTH"
270 INPUT"(L»P or B)

" ?T*
280 IF T*="L" GOTO 310
290 IF T$="P" GOTO 340
300 IF T*<>"B" GOTO 260
310 CLS:FOR 1=1 TO N
320 PRINT A< I) :NEXT I

330 IF T$="L" GOTO 350
340 FOR 1=1 TO N
345 LPRINT A(I) : NEXT I:LPRINT" "

350 PRINT:PRINT"SORTING, PLEASE WAIT"
360 FOR 1=1 TO N-l
370 FOR J=l TO N-I

195

380 IF fl(JXfl(J+l) GOTO 400
390 A = A(J) :A< J)=A(J+l) :A(J+l)=A
400 NEXT JsNEXT I

410 CLS
420 INPUT"OUTPUT SORTED VALUES (Y or N)"?T$
430 IF T$="N" GOTO 550
440 IF T$<>"Y" GOTO 410
450 PRINT "DUTPUT ON LCD , LINE PRINTER OR BOTH"
4B0 INPUT"(L» P or B

)

" !T$
470 IF T*="L" GOTO 500
480 IF T$="P" GOTO 530
430 IF T*<>"B" GOTO 450
500 CLS:FOR 1=1 TO N
510 PRINT A(I) :NEXT I

520 IF T*="L" GOTO 550
530 FOR 1=1 TO N
540 LPRINT A(I) sNEXT I

550 REM CALCULATE THE MEAN
5G0 FOR 1=1 TO N:S=S+A(I) :NEXT I

570 M = S/N
580 REM CALCULATE THE (SAMPLE) VARIANCE
590 S=0:FOR 1=1 TO N
600 S=S+(A(I)-M) *2:NEXT I

B10 V=S/(N-1)

B20 REM CALCULATE THE (SAMPLE) STANDARD DEVIATION
B30 SD=SQR(V)
B40 REM CALCULATE THE MEDIAN
650 N1 = INT((N+D/2) :N2=INT((N+2)/2)
660 MD=(A(N1)+A(N2))/2
670 REM DISPLAY THE RESULTS
675 CLS
680 PRINT"NUMBER OF VALUES"TAB< 20)

N

682 PRINT"MAX» MIN VALUES" TAB (20) A (N) 5 A (1

)

684 PRINT"MEAN"TAB(20)M
686 PRINT"MEDIAN"TAB(20)MD
688 print"variance"tab(20)v
700 print"standard dev i at i on" tab < 20) sd
702 print:input"output results to printer <y or n)

;t*
704 if t$="n" goto 740
70s if t$<>"y" goto 702
708 lprint"number of values" tab (40)

n

710 lprint"max» min values"tab(40) a(n) 5 a (1

)

720 lprint"mean"tab<40)m
725 LPRINT"MEDIAN"TAB(40)MD
730 LPRINT"VARIANCE"TAB(40)V
735 LPRINT"STANDARD DEVI ATION" TAB (40) SD
738 LPRINT" ":LPRINT" ":LPRINT" "

740 CLS: INPUT"HISTOGRAM (Y or NJ'ST*
750 IF T$="N" THEN END
7B0 IF T$<>"Y" GOTO 740
770 CLS
780 INPUT"NUMBER OF CLASSES (6-10) " iNC*

196

790
795
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
870
980
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240

1250
1260
1265
1270

1280
1290

C=INT(
F NC<6
EM COM
G=A(N)
= 1

OR 1 = 1

D=A(1)
F A(J>
(I)=F(
OTO 85
EXT I

(NC)=N
EM DET
OR 1 = 1

F MF>F
EXT I

RINT'H
NPUT"

(

F T$="
F T* = "

F T*<>
REM DI
CLS
REM DR
LINE(

1

Y2=60:
F0RI=1
X1=X2:
X2=X1+
LINE(X
NEXT I

IF T$ =

REM PR
X*="**
FOR 1 =

LPRINT
FOR J =

H=30*F
IF H>I
NEXT J

NEXT I

LPRINT
F0RI=1
LPRINT
LPRINT
LPRINT
FREQUE
LPRINT
FOR 1 =

BD=A<1
LPRINT
TAB(51
NEXT I

END

VAL(NC$)

)

OR NCM5 GOTO 770
PUTE THE FREQUENCIES
-A(1

)

:CL=RG/NC

TO NC-1
+ I*CL
>BD GOTO 880
I) + l : J = J + 1

-J + l

ERMINE THE MAX FREQUENCY
TO NC

(I) GOTO 930 ELBE MF=F(I)

ISTOGRAM ON LCD » LINE PRINTER OR BOTH"
L > P or B) " ;T$
L" GOTO 1010
P" GOTO 1110
"B" GOTO 940
SPLAY HISTOGRAM ON LCD

AW THE AXES
3>0)-<13»60):LINE-<238>60)
X2 = 20
TO NC

Y1=60-50*F< D/MF
212/NC
1 »Y1)-(X2 »Y2) »1 »BF

"L" GOTO 1280
INT THE HISTOGRAM
**" :Y$=" "

30 TO 1 STEP -1
"*" STAB (10) ;

1 TO NC
(J)/MF
THEN LPRINT X$! ELSE LPRINT Y$5
:LPRINT

STRING$(80 »"*"

)

TO NC
TAB(10 + 4*(1-1)) I ! : NEXT I

Y$:LPRINTY$:LPRINTY$
"CLASS NUMBER"TAB(29) " CLASS" TAB (49)

"

NCY
STRING$<60»"-")

1 TO NC
)+(I-1)*CL
TAB (4) I 5TAB(14)BD!TAB(31) "TO" 5BD+CL5

)F(I)

197

Save the program in a RAM file by entering the command:

SAVE "STAT"

You may wish to save the descriptive statistics program on a separate cassette to make
loading faster in the future. Use the command

CSAME "STAT"

to write the program to a blank cassette.

This program computes a variety of common statistical measures on a set of data. The

data must be in the form of a file either in RAM or on cassette. You can use TEXT to

create the data file.

Go to the Menu by pressing CFS) . Move the cursor over the word TEXT and press

(ENTER] . You will see the prompt

File to edit?

Enter a name for the data file to be created. For example, enter a file name of DATA:

File to edit? DATA

Type a list of data values separated with either commas or carriage returns. You can

speed up this process by pressing (NUM) and then using the appropriate keys as a

ten-key number pad.

For example, type:

23,5*35.7 .45, 2 .4G . 12 .67 .30 .44 .22 .33 >45<
IB .37 .5G .74 .82 .13 .28 .74 ,GS .91 .43 .32 .55<
4G.77.31 .8G.58.59.G2.43.71 .38 »G9 .23 .77<
48. 39. 42. 3G. 45. 30 .37. 43 .47,4 1<

Save the data as a RAM file by pressing (H). You will return to the Menu. If you

want to make any changes to your data file, simply move the cursor over the file

name DATA.DO and press (ENTER) . Use the standard Editor commands to make your

changes.

After your data file is created, you can use the descriptive statistics program to list it,

sort it, compute the number of values, the maximum and minimum, the mean,

median, variance and standard deviation. You can also plot a histogram of the data to

give an indication of its distribution.

From the Menu, place the cursor over the file name STAT . BA and press (ENTER) .

This will load and execute the descriptive statistics program. You should see the

prompt:

RAM or CASSETTE FILE (R or C>?

If you have saved your data in the RAM file DATA.DO as described above, enter an

R. You will see:

RAM or CASSETTE FILE (R or C>? R
FILE NAME?

Enter the name of your data file. For the example, enter a file name of DATA. The
display will clear and another prompt is displayed:

OUTPUT DATA (Y or N>?

198

If you would like the data file to be listed, enter CD (for Yes). Enter CO (for No)

if you do not want to see the data listed.

If you do request the data to be output, you will see the prompt

OUTPUT ON LCD, LINE PRINTER, OR BOTH
(L»P or B>?

Here you have a choice of output devices. Enter L if you want the data displayed only

on the LCD, enter P if you want the data output to the printer only, or enter B if you

want the output to go to both the LCD and the printer.

If you request output to the printer, make sure that you have your printer attached to

the printer port and that it is turned on. Otherwise, the program will wait for the

printer before proceeding.

The data is displayed and/or printed in a single column as illustrated below:

23.5
35.7
45.2

43
47
41

After the data is displayed, or if no data display was requested, you will see the

message

SORTING, PLEASE WAIT

After the data has been sorted, the display will clear and you will be prompted with:

OUTPUT SORTED VALUES (Y or N)?

Enter (Y) (for Yes) if you want to output the data values in sorted order, or enter

(N) (for No) if you do not desire a listing of the sorted data values.

If you do request the sorted values to be output, you will again be prompted to direct

the output to the LCD, the Printer or both as shown below:

OUTPUT SORTED VALUES <Y or N)? Y

OUTPUT ON LCD, LINE PRINTER, OR BOTH
(L, P or B)?

The data values will be output in ascending order as illustrated below:

12
13
16

4

82
86
91

199

After the sorted data has been output, or if no output was requested, the display will

dear and the results; will he displayed For the example, yog would see:

NUMBER OF VALUES
MAX, MIN VALUES
MEAN
MEDIAN
VARIANCE
BTANOARD DEVIATION

47
91. 12
47.2
44
387*63695651174
l9,G68il98(S7BB4

The bottom line of the display give* the prompt

OUTPUT RESULTS TO PRINTER fY or N)?

If you would like to output the above results to the line printer, cuter CY1 (for Yes).

Eiiter (H) {for No) if you do not want the results printed,

After the results are printed, or if you do not request output to the printer, the display

clears and another prompt appears:

HISTOGRAM <Y or N>7

Biter [Y J (for Yes) if you would like to see a histogram (graphic plot of the

distribution of the data). Enter C H J (for No) if you do nut want a histogram.

If you request, a histogram, you will be prompted to enter the number of classes:

NUMBER OF CLASSES (6-18)7

The number of classes is the number of intervals of equal width to classify the data

into. For example, if yon want to divide the data into seven equal intervals, enter 10.

You must now direct the histogram to be output to the LCD, the Printer or Both in

response to the next prompt:

NUMBER OF CLASSES (6-1.0)7 10
HISTOGRAM ON LED p LINE PRINTER OR QOTH
(Li P or B > ?

If you enterCO you should see the histogram on the LCD similar to Figure 3A-1
and on the primer similar to Figure 3A-2,

Figure 3A-1, LCD Histogram

100

* ****
* ****
* ****
* **** .

* ****
* ****
* ********
* ********
* ********
* ************
* ************
* ************
* ************
* ************
* ************
* ************
* ************
* ************
* **************** •***
* **************** ****
* **************** ****
* ************************************
* ***••••********••*******•**********•
* ************************************
* ******••*******••********••••*******•***
* **
* **
* **
* **
**123456789 10

Figure 3A-2. Printer Histogram

If you request printer output, you will also obtain a listing of the class intervals and
the corresponding frequencies of occurence within each interval. This is illustrated in

Figure 3A-3. The frequency is the number of data values which occur within the class

boundaries. For example, in Figure 3A-3, there are seven data values within the

approximate boundaries 27.8 to 35.7.

CLASS NUMBER CLASS FREQUENCY

1 12 TO 19.9 3
Z 19.9 TO Z7.8 3
3 27.8 TO 35.7 7
a 35.7 TO 43.6 10
5 43.6 TO 51.5 8
6 51.5 TO 59.4 4
7 59.

a

TO 67.3 3
8 67.8 TO 75.2 4
9 75.2 TO 83. 1 3
10 88.1 TO 91 2

Figure 3A-3. Listing of Class Intervals

Explanation of the Program:

Line 100 The data values will be stored in the array A and the frequencies for the

histogram will be stored in the array F. The maximum number of data values is 100.

Lines 185 - 150 This part of the program allows the user to indicate whether the data

will be read from a RAM or cassette file and to input the file name. The file name is

stored in N$ along with the device (either RAM: or CAS:).

201

Lines 168 - 210 The data file is opened for input. The data is read one value at a time

from the input file until an end of file is encountered (Line 180). When the last data

value is read, the input file is closed. The number of data values is incremented and

stored in the numeric variable N.

Lines 220 - 345 The user is asked whether to output the data values or not. If not,

execution jumps to Line 350. If output is desired, the user is asked to specify whether

the LCD, the Printer or Both should be used. If the LCD only is desired, only the

PRINT statement is executed. If the Printer only is desired, only the LPRINT
statement is executed. If both the LCD and the Printer are desired, then both the

PRINT and the LPRINT statements are executed.

A FOR/NEXT loop increments through all N data values.

Lines 350 - 400 A bubble sort is used to put the data values into ascending order.

This is necessary in order to compute the median.

Lines 410 - 540 This section is similar to Lines 220 - 340, except that the sorted data

values will be output if desired.

Lines 550 - 660 The mean, variance, standard deviation and median are calculated

and stored respectively in the variables M, V, SD, MD.

Lines 670 738 The results are output to the display using PRINT statements. The
user is asked if output is also desired to the printer. If it is, the results are output a

second time using LPRINT statements.

Lines 740 - 930 The user is asked if a histogram is desired. If not, execution ends. If

a histogram is desired, it is necessary to input the number of classes, NC, and then to

calculate the class length, CL. A FOR/NEXT loop (Lines 830 - 880) increments

through all data values and counts the frequency of occurrence in each class. The
frequencies are stored in the F array.

A FOR/NEXT loop (Lines 910 - 930) is used to compute the maximum frequency and

stores it in MF. The maximum frequency is required in order to scale the histogram

display.

Lines 940 - 980 The user is asked whether to output the histogram to the LCD, to the

Printer or to both.

Lines 1000 - 1100 This section of the program displays the histogram on the LCD.
Since the display area is limited, no labels are used on the axes. The LINE statement

is used to draw the axes.

A FOR/NEXT loop (Lines 1050 - 1090) is used to draw a box for each class, where

the height of the box represents the frequency of that class.

Lines 1110 - 1220 The histogram is output to the printer. Since there is no LINE
statement for use with the printer, the histogram must be printed one line at a time

using standard ASCII characters. The asterisk, "*", was picked somewhat arbitrarily

as the fill character because of its relative density.

A FOR/NEXT loop (Lines 1130 - 1190) prints the "boxes". The vertical axis is

printed in line 1140. The horizontal axis is printed in line 1200. A FOR/NEXT loop

(Lines 1210 - 1220) is used to print the horizontal axis labels.

Lines 1230 • 1280 A table consisting of the class intervals and the corresponding

frequencies is printed.

202

INDEX
Subject Page Subject Page

Entry Mode 1 75
Error Message 3
FILES 16

FOR/NEXT 88,90, 91

FRE 115
File Extension 16

File Name 15, 16
Files 3

Full/Half Duplex 169, 181

Function Keys 1 55
GOSUB 142, 143
GOTO 6
Handshaking 1 66
IF/THEN 46
IF/THEN/ELSE 50-52

INKEY$ 119

INPUT 35-38

INPUTS 173

INPUT# 125
INT 135, 140
Infinite Loop 6, 54
Insert (a line) 12

Insert Mode 71

KEY ON 155
KEY OFF 159
KEY STOP 160
KEY 155, 156
KEYLIST 155, 156
KILL 28, 29
Key Commands 1 80
LEFTS 58
LEN 60
LINE 100
LIST 7, 16
LOAD 17
LOAD "CAS: filename" 23
LOAD "COM: 170
Line Status 1 66
Log-ON Sequence 179, 181

Log-Off 181

Log-On 175, 182
Logical Operators 121

Looping 53
MAXFILES 128
MERGE 26-28
MID$ 63
Main Menu 3
Multiple Statements 90
NAME... AS 20
NEW 13

ADDRESS 182
AND 120, 121

ANS/ORIG 178
ASCII 26, 116-118, 165
ATN 114
Adding (a line) 12
Arithmetic Expressions 32
Arithmetic Operators 32
Arrays 92-94

Assignment Statement 32
Auto Log-On 179
BASIC 1,3
BASIC Program 5
BEEP 145
BREAK 3, 6
Baud Rate 166
Bits 1 65
Branching 41

Bubble Sort 136
CALL 1 82
CHR$ 116
CLEAR 40, 41

CLOAD 22
CLOAD? 24
CLOSE 124, 125
CLS 88
COM ON 1 72, 1 73
COM OFF 173
CONT 7
CSAVE 21

Cassette 20
Command 4
Communication Parameters . .176
Condition 47
Cursor Movement Keys 70
Cut 82, 83
DATA 55, 56
DATE$ 65
DAYS 57
DIM 92, 93
Delete (a line) 11

Deleting 74
Download 169, 182
EDIT 70
END.. 143
ENTER 3, 4
Echo 169
Editing 7
Editor 69
end-of-file 70

203

Subject Page

NOT 125
Nested Loops 97
Numeric Constants 32
Numeric Variables 32
ON COM 172
ON KEYGOSUB 157, 158
OPEN 124
OPEN "COM: 171

OPEN "MDM: 183
OR 121

PAUSE 8
PEEK 182
PRESET 99
PRINT 4
PRINTUSING 48
PRINT® 101

PRINT # 124
PSET 99
Parallel Communication 165
Parity bit 165, 166
Password 179
Paste 83, 84
Paste buffer 82
RAM 15
REM 187
RESTORE 55
RIGHT$ 64
RND 149
RS-232C Interface 1 65
RUN 5,6
Random Numbers 1 49
Relational Operator 47
Reverse Video 82
SAVE 16, 17
SAVE "CAS:filename" 21

SAVE "COM: 167
SOUND 145, 146
SOUND OFF 145
SQR 111
STEP 96
STOP 56
STR$ 63
STRINGS 61

SUBROUTINE 157
Select 82, 83
Serial Port.. 165
Serial Communications 1 65
Sorting 136, 137
Start Bit 165
Stop Bit 165-167

Subject Page

Subscripted Variables 87, 93
Syntax Error 4
TAB 131

TAN 113
TELCOM 175
TIME$ 62
Term 178
Terminal Mode 168, 175, 178
Uploading 169, 182
User ID 179
VAL 63
VARPTR 182
Variable, String 40
Word Length 166
XON/XOFF 166, 167

204

